• Title/Summary/Keyword: Chemopreventive potential

Search Result 189, Processing Time 0.029 seconds

Chemopreventive Potential of Lonicerae flos Aqua-Acupuncture Solution (금은화 약침액의 암예방 효과)

  • Kim, Joong-Wan;Choi, Hey-Kyung;Shon, Yun-Hee;Lim, Jong-Kook;Lee, Hang-Woo;Nam, Kyung-Soo
    • Korean Journal of Pharmacognosy
    • /
    • v.30 no.3
    • /
    • pp.261-268
    • /
    • 1999
  • Lonicerae flos aqua-acupuncture solution (LFAS) and Lonicerae flos water-extracted solution (LFWS) were prepared and tested for chemopreventive potentials. Three biomarkers [quinone reductase (QR), ornithine decarboxylase (ODC), glutathione(GSH)] were used to test chemopreventive potential of LFAS. LFAS was potent inducer of QR activity in Hepa1c1c7 murine hepatoma cells, whereas LFWS is less potent. LFAS and LFWS were also induced QR activities in cultured human hepatoma Hep3B cells. The effect of LFAS and LFWS were tested on the growth of Acanthamoeba castellanii. Proliferation of Acanthamoeba castellanii was inhibited by LFAS and LFWS at concentrations of $0.1{\times},\;0.5{\times}\;1{\times},\;and\;3{\times}.$ In addition, GSH levels were increased about 2-fold with LFAS and 1.5-fold with LFWS in cultured murine hepa1c1c7 cells. LFAS and LFWS were also shown to increase GSH levels in human Hep3B cells. These results suggest that LFAS has chemopreventive potential by inducing QR activity, inhibition of ODC activity and increasing GSH levels.

  • PDF

Evaluation of the Potential of Cancer Chemopreventive Activity Mediated by Inhibition of 12-O-tetradecanoly Phorbol 13-acetate-induced Ornithine Decarboxylase Activity

  • Lee, Sang-Kook;Pezzuto, John-M.
    • Archives of Pharmacal Research
    • /
    • v.22 no.6
    • /
    • pp.559-564
    • /
    • 1999
  • In order to discover new cancer chemopreventive agents from natural or synthetic products, a structurally diverse class of chemopreventive agents was evaluated using in vitro biomarker of inhibition of 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced ornithine decarboxylase (ODC) activity in cultured mouse epidermal 308 (ME)308 cells. As a results, apigenin, benzylisothiocyanate, curcumin, diallyl disulfide, N-(4-hydroxyphenyl)retinamide (4-HPR), menadione, miconazole, nordihydroguaiaretic acid (NDGA) and phenethyl isothiocyanate showed potent inhibitory effects in this process. A chemically diverse group of compounds was included in the evaluation, such as flavonoids, retinoids, isothiocyanates, sulfur-containing compounds and phenolic antioxidant compounds. These data are suggestive to understand the cancer chemopreventive potential mediated by these substances.

  • PDF

Cancer Chemopreventive Potential of Scenedesmus spp. Cultured in Medium Containing Bioreacted Swine Urine

  • Shon, Yun-Hee;Nam, Kyung-Soo;Kim, Mi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.158-161
    • /
    • 2004
  • Scenedesmus spp. were cultured for 51 days in newly developed medium, KEP I (Kim and Ecopeace: initials of corresponding author and environmental company) made with Bacterio-Mineral-Water (3%, v/v) that had been bio-reacted with swine urine medium to 10% (v/v) Bold's Basal medium, and investigated for cancer chemopreventive potential by measuring the induction of quinone reductase (QR), glutathione S-transferase (GST), and reduced glutathione (GSH), and inhibition of cytochrome P450 (CYP) 1A1 activity. The activitives of QR and GST of Scenedesmus spp. cultured in KEP I medium were increased by 3.0-fold and 1.5-fold, respectively. However, Scenedesmus spp. cultured in control medium (CT) increased the activitives of QR and GST by 1.8-fold and 1.3-fold, respectively. Scenedesmus spp. in KEP I medium strongly inhibited CYP 1Al activity. These results show that Scenedesmus spp. in KEP I medium has cancer chemopreventive potential and may be a candidate for further development as a chemopreventive agent.

Chemopreventive Potential of Angelicae gigantis Radix Aqua-acupuncture Solution (당귀 약침액의 암예방 효과)

  • 김영기;조경희;손윤희;최혜경;김소연;임종국;남경수
    • YAKHAK HOEJI
    • /
    • v.44 no.3
    • /
    • pp.283-292
    • /
    • 2000
  • Angelicae gigantis Radix aqua-acupuncture solution (AGRAS) and Angelicae gigantis Radix water-extracted solution (AGRWS) were prepared and tested for their organ toxicities and chemopreventive potentials. The organ-toxicity of AGRAS to male ICR mice was studied by the measurements of glutamic oxaloacetic transaminase (GOT), glutamic pyruvate transaminase (GPT), lactate dehydrogenase (LDH) and alkaline phosphatase (ALP-s) activities after injection of AGRAS for 7 days. The activities of GOT GPT and LDH were decreased, but the activity of ALP-s was not changed with AGRAS. When AGRAS was administered once daily for 10 days before the tumor implantation, AGRAS exerted antitumor activity by inhibiting the growth of Ehrich ascites tumor cells (EATC) in viva. The inductions of quinone reductase (QR), glutathione (GSH) and glutathione S-transferase (GST) and inhibition of polyamine metabolism were tested for the chemopreventive potentials of AGRAS and AGRWS. AGRAS was potent inducer of QR activity in murine hepatoma Hepalclc7 cells. In cultured rat Ac2F cells, AGRAS was also significantly induced QR activity GSH levels were increased about 1.3 fold with AGRAS. In addition the activity of GST was increased about 2.5 fold with AGRAS at the concentration of $0.1{\;}{\times}{\;}$. The effects of AGRAS and AGRWS were tested on the growth of Acanthamoeba castellanii. Proliferation of Acanthamoeba castellanii in a broth medium was inhibited by AGRAS and AGRWS at the concentration of $1{\;}{\times}{\;}and{\;}5{\;}{\times}{\;}$, respectively: These results suggest that AGRAS has chemopreventive potential by inducing QR activity increasing GSH and GST levels and inhibition of polyamine metabolism.

  • PDF

Suppressive effects of pinosylvin on prostaglandin E$_2$and nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 cells

  • Park, Eun-Jung;Min, Hye-Young;Kim, Moon-Sun;Pyee, Jae-Ho;Ahn, Yong-Hyun;Lee, Sang-Kook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.102-102
    • /
    • 2003
  • The inhibitors of prostaglandin biosynthesis and nitric oxide production by corresponding inducible isozyme have been considered as potential anti-inflammatory and cancer chemopreventive agents. In our continuous search for cancer chemopreventive agents from natural products, we have evaluated the inhibitory potential of PGE$_2$and NO production in lipopolysaccharide (LPS)-induced mouse macrophage RAW264.7 cells. As a result, pinosylvin (3,5-dihydroxy-trans-stilbene), a stilbenoid, mainly found from the heartwood and leaves of the Pinus sylvestris, showed potential inhibitory activity of LPS-induced PGE$_2$and NO production in a dose-dependent manner. Pinosylvin also suppressed the LPS-induced iNOS protein expression. Further study revealed that pinosylvin exhibited antioxidant activity by the DPPH free radical scavenging potential and inhibitory effect of xanthine oxidase activity. In addition, pinosylvin inhibited COX -2 overexpressed human colon cancer cell (HT-29) growth in a time- and dose-dependent manner. These findings suggest that pinosylvin might be a promising candidate for developing cancer chemopreventive agent.

  • PDF

Potential Induction of Quinone Reductase Activity of Natural Products in Cultured Murine Hepa1c1c7 Cells

  • Heo, Yeon-Hoi;Lee, Sang-Kook
    • Natural Product Sciences
    • /
    • v.7 no.2
    • /
    • pp.38-44
    • /
    • 2001
  • NAD(P)H:quinone reductase (QR), known as DT-diaphorase, is a kind of detoxifying phase II metabolic enzyme catalyzing hydroquinone formation by two electron reduction pathway from quinone type compounds, and thus facilitating excretion of quinoids from human body. With the usefulness of QR induction activity assay system for the modulation of toxicants, in the course of searching for cancer chemopreventive agents from natural products, the methanolic extracts of approximately two hundreds of oriental medicines were primarily evaluated using the induction potential of quinone reductase (QR) activity in cultured murine Hepa1c1c7 cells. As a result, several extracts including Hordeum vulgare, Momordica cochinchinensis, Strychnos ignatii, Houttuynia cordata, and Polygala japonica were found to significantly induce QR activity. In addition, the methylene chloride fraction of H. vulgare, one major dietary food source, showed potent induction of QR activity $(CD=6.4{\mu}g/ml)$. Further study for isolation of active principles from these lead extracts is warranted for the discovery of novel cancer chemopreventive agents.

  • PDF

Cancer Chemopreventive Potential of Procyanidin

  • Lee, Yongkyu
    • Toxicological Research
    • /
    • v.33 no.4
    • /
    • pp.273-282
    • /
    • 2017
  • Chemoprevention entails the use of synthetic agents or naturally occurring dietary phytochemicals to prevent cancer development and progression. One promising chemopreventive agent, procyanidin, is a naturally occurring polyphenol that exhibits beneficial health effects including anti-inflammatory, antiproliferative, and antitumor activities. Currently, many preclinical reports suggest procyanidin as a promising lead compound for cancer prevention and treatment. As a potential anticancer agent, procyanidin has been shown to inhibit the proliferation of various cancer cells in "in vitro and in vivo". Procyanidin has numerous targets, many of which are components of intracellular signaling pathways, including proinflammatory mediators, regulators of cell survival and apoptosis, and angiogenic and metastatic mediators, and modulates a set of upstream kinases, transcription factors, and their regulators. Although remarkable progress characterizing the molecular mechanisms and targets underlying the anticancer properties of procyanidin has been made in the past decade, the chemopreventive targets or biomarkers of procyanidin action have not been completely elucidated. This review focuses on the apoptosis and tumor inhibitory effects of procyanidin with respect to its bioavailability.

Prospective Targets for Colon Cancer Prevention: from Basic Research, Epidemiology and Clinical Trial

  • Shingo Miyamoto;Masaru Terasaki;Rikako Ishigamori;Gen Fujii;Michihiro Mutoh
    • Journal of Digestive Cancer Research
    • /
    • v.4 no.2
    • /
    • pp.64-76
    • /
    • 2016
  • The step-wise process of colorectal carcinogenesis from aberrant crypt foci, adenoma to adenocarcinoma, is relatively suitable for chemopreventive intervention. Accumulated evidences have revealed that maintaining an undifferentiated state (stemness), inflammation, and oxidative stress play important roles in this colon carcinogenesis process. However, appropriate molecular targets that are applicable to chemopreventive intervention regarding those three factors are still unclear. In this review, we summarized appropriate molecular targets by identification and validation of the prospective targets from a comprehensive overview of data that showed colon cancer preventive effects in clinical trials, epidemiological studies and basic research. We first selected a study that used aspirin, statins and metformin from FDA approved drugs, and epigallocatechin-gallate and curcumin from natural compounds as potential chemopreventive agents against colon cancer because these agents are considered to be promising chemopreventive agents. Experimental and observational data revealed that there are common target molecules in these potential chemopreventive agents: T-cell factor/lymphoid enhancer factor (TCF/LEF), nuclear factor-&B (NF-κB) and nuclear factor-erythroid 2-related factor 2(NRF2). Moreover, these targets, TCF/LEF, NF-κB and NRF2, have been also indicated to suppress maintenance of the undifferentiated state, inflammation and oxidative stress, respectively. In the near future, novel promising candidate agents for colon cancer chemoprevention could be identified by integral evaluation of their effects on these three transcriptional activities.

  • PDF

Inhibitory effects of pinosylvin on prostaglandin E$_2$ and nitric oxide production in lipopolysaccharide-stimulated mouse macrophage cells

  • Park, Eun-Jung;Min, Hye-Young;Kim, Moon-Sun;Pyee, Jae-Ho;Ahn, Yong-Hyun;Lee, Sang-Kook
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.194.2-194.2
    • /
    • 2003
  • The inhibitors of prostaglandin biosynthesis and nitric oxide production by corresponding inducible isozyme have been considered as potential anti-inflammatory and cancer chemopreventive agents. In our continuous search for cancer chemopreventive agents from natural products, we have evaluated the inhibitory potential of PGE$_2$ and NO production in lipopolysaccharide (LPS)-induced mouse macrophage RAW 264.7 cells. As a result, pinosylvin (3,5-dihydroxy-trans-stilbene), a stilbenoid, mainly found from the heartwood and leaves of the Pinus sylvestris, showed potential inhibitory activity of LPS-induced PGE$_2$ and NO production in a dose-dependent manner. (omitted)

  • PDF

NOVEL LEAD STRUCTURES AND MECHANISMS FOR CANCER CHEMOPREVENTION

  • Gerhauser, C.
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.35-36
    • /
    • 2001
  • Nutrition influences cancer incidence and offers a variety of preventive dietary factors including non-nutritive plant metabolites. To identify novel potential chemopreventive agents, we have set up cell- and enzyme-based in vitro marker systems relevant for prevention of carcinogenesis in vivo. This experimental approach led to the identification of Xanthohumol (Xn), a prenylated chalcone from hop (Humulus lupulus L.) as a most promising broad-spectrum chemopreventive agent.(omitted)

  • PDF