• 제목/요약/키워드: Chemokine receptor

검색결과 126건 처리시간 0.021초

네트워크 약리학을 기반으로한 총명공진단(聰明供辰丹) 구성성분과 알츠하이머 타겟 유전자의 효능 및 작용기전 예측 (Network pharmacology-based prediction of efficacy and mechanism of Chongmyunggongjin-dan acting on Alzheimer's disease)

  • 권빛나;유수민;김동욱;오진영;장미경;박성주;배기상
    • 대한한의학회지
    • /
    • 제44권2호
    • /
    • pp.106-118
    • /
    • 2023
  • Objectives: Network pharmacology is a method of constructing and analyzing a drug-compound-target network to predict potential efficacy and mechanisms related to drug targets. In that large-scale analysis can be performed in a short time, it is considered a suitable tool to explore the function and role of herbal medicine. Thus, we investigated the potential functions and pathways of Chongmyunggongjin-dan (CMGJD) on Alzheimer's disease (AD) via network pharmacology analysis. Methods: Using public databases and PubChem database, compounds of CMGJD and their target genes were collected. The putative target genes of CMGJD and known target genes of AD were compared and found the correlation. Then, the network was constructed using Cytoscape 3.9.1. and functional enrichment analysis was conducted based on the Gene Ontology (GO) Biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways to predict the mechanisms. Results: The result showed that total 104 compounds and 1157 related genes were gathered from CMGJD. The network consisted of 1157nodes and 10034 edges. 859 genes were interacted with AD gene set, suggesting that the effects of CMGJD are closely related to AD. Target genes of CMGJD are considerably associated with various pathways including 'Positive regulation of chemokine production', 'Cellular response to toxic substance', 'Arachidonic acid metabolic process', 'PI3K-Akt signaling pathway', 'Metabolic pathways', 'IL-17 signaling pathway' and 'Neuroactive ligand-receptor interaction'. Conclusion: Through a network pharmacological method, CMGJD was predicted to have high relevance with AD by regulating inflammation. This study could be used as a basis for effects of CMGJD on AD.

Change of Dendritic Cell Subsets Involved in Protection Against Listeria monocytogenes Infection in Short-Term-Fasted Mice

  • Young-Jun Ju;Kyung-Min Lee;Girak Kim;Yoon-Chul Kye;Han Wool Kim;Hyuk Chu;Byung-Chul Park;Jae-Ho Cho;Pahn-Shick Chang;Seung Hyun Han;Cheol-Heui Yun
    • IMMUNE NETWORK
    • /
    • 제22권2호
    • /
    • pp.16.1-16.20
    • /
    • 2022
  • The gastrointestinal tract is the first organ directly affected by fasting. However, little is known about how fasting influences the intestinal immune system. Intestinal dendritic cells (DCs) capture antigens, migrate to secondary lymphoid organs, and provoke adaptive immune responses. We evaluated the changes of intestinal DCs in mice with short-term fasting and their effects on protective immunity against Listeria monocytogenes (LM). Fasting induced an increased number of CD103+CD11b- DCs in both small intestinal lamina propria (SILP) and mesenteric lymph nodes (mLN). The SILP CD103+CD11b- DCs showed proliferation and migration, coincident with increased levels of GM-CSF and C-C chemokine receptor type 7, respectively. At 24 h post-infection with LM, there was a significant reduction in the bacterial burden in the spleen, liver, and mLN of the short-term-fasted mice compared to those fed ad libitum. Also, short-term-fasted mice showed increased survival after LM infection compared with ad libitum-fed mice. It could be that significantly high TGF-β2 and Aldh1a2 expression in CD103+CD11b- DCs in mice infected with LM might affect to increase of Foxp3+ regulatory T cells. Changes of major subset of DCs from CD103+ to CD103- may induce the increase of IFN-γ-producing cells with forming Th1-biased environment. Therefore, the short-term fasting affects protection against LM infection by changing major subset of intestinal DCs from tolerogenic to Th1 immunogenic.

Integration and Reanalysis of Four RNA-Seq Datasets Including BALF, Nasopharyngeal Swabs, Lung Biopsy, and Mouse Models Reveals Common Immune Features of COVID-19

  • Rudi Alberts;Sze Chun Chan;Qian-Fang Meng;Shan He;Lang Rao;Xindong Liu;Yongliang Zhang
    • IMMUNE NETWORK
    • /
    • 제22권3호
    • /
    • pp.22.1-22.25
    • /
    • 2022
  • Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndromecoronavirus-2 (SARS-CoV-2), has spread over the world causing a pandemic which is still ongoing since its emergence in late 2019. A great amount of effort has been devoted to understanding the pathogenesis of COVID-19 with the hope of developing better therapeutic strategies. Transcriptome analysis using technologies such as RNA sequencing became a commonly used approach in study of host immune responses to SARS-CoV-2. Although substantial amount of information can be gathered from transcriptome analysis, different analysis tools used in these studies may lead to conclusions that differ dramatically from each other. Here, we re-analyzed four RNA-sequencing datasets of COVID-19 samples including human bronchoalveolar lavage fluid, nasopharyngeal swabs, lung biopsy and hACE2 transgenic mice using the same standardized method. The results showed that common features of COVID-19 include upregulation of chemokines including CCL2, CXCL1, and CXCL10, inflammatory cytokine IL-1β and alarmin S100A8/S100A9, which are associated with dysregulated innate immunity marked by abundant neutrophil and mast cell accumulation. Downregulation of chemokine receptor genes that are associated with impaired adaptive immunity such as lymphopenia is another common feather of COVID-19 observed. In addition, a few interferon-stimulated genes but no type I IFN genes were identified to be enriched in COVID-19 samples compared to their respective control in these datasets. These features are in line with results from single-cell RNA sequencing studies in the field. Therefore, our re-analysis of the RNA-seq datasets revealed common features of dysregulated immune responses to SARS-CoV-2 and shed light to the pathogenesis of COVID-19.

Expression changes of CX3CL1 and CX3CR1 proteins in the hippocampal CA1 field of the gerbil following transient global cerebral ischemia

  • Ji Hyeon Ahn;Dae Won Kim;Joon Ha Park;Tae-Kyeong Lee;Hyang-Ah Lee;Moo-Ho Won;Choong-Hyun Lee
    • International Journal of Molecular Medicine
    • /
    • 제44권3호
    • /
    • pp.939-948
    • /
    • 2019
  • Chemokine C-X3-C motif ligand 1 (CX3CL1) and its sole receptor, CX3CR1, are known to be involved in neuronal damage/death following brain ischemia. In the present study, time-dependent expression changes of CX3CL1 and CX3CR1 proteins were investigated in the hippocampal CA1 field following 5 min of transient global cerebral ischemia (tgCI) in gerbils. To induce tgCI in gerbils, bilateral common carotid arteries were occluded for 5 min using aneurysm clips. Expression changes of CX3CL1 and CX3CR1 proteins were assessed at 1, 2 and 5 days after tgCI using western blotting and immunohistochemistry. CX3CL1 immunoreactivity was strong in the CA1 pyramidal cells of animals in the sham operation group. Weak CX3CL1 immunoreactivity was detected at 6 h after tgCI, recovered at 1 day after tgCI and disappeared from 5 days after tgCI. CX3CR1 immunoreactivity was very weak in CA1 pyramidal cells of the sham animals. CX3CR1 immunoreactivity in CA1 pyramidal cells was significantly increased at 1 days after tgCI and gradually decreased thereafter. On the other hand, CX3CR1 immunoreactivity was significantly increased in microglia from 5 days after tgCI. These results showed that CX3CL1 and CX3CR1 protein expression levels in pyramidal cells and microglia in the hippocampal CA1 field following tgCI were changed, indicating that tgCI-induced expression changes of CX3CL1 and CX3CR1 proteins might be closely associated with tgCI-induced delayed neuronal death and microglial activation.

Aromadendrin Inhibits Lipopolysaccharide-Induced Inflammation in BEAS-2B Cells and Lungs of Mice

  • Juhyun Lee;Ji-Won Park;Jinseon Choi;Seok Han Yun;Bong Hyo Rhee;Hyeon Jeong Jeong;Hyueyun Kim;Kihoon Lee;Kyung-Seop Ahn;Hye-Gwang Jeong;Jae-Won Lee
    • Biomolecules & Therapeutics
    • /
    • 제32권5호
    • /
    • pp.546-555
    • /
    • 2024
  • Aromadendrin is a phenolic compound with various biological effects such as anti-inflammatory properties. However, its protective effects against acute lung injury (ALI) remain unclear. Therefore, this study aimed to explore the ameliorative effects of aromadendrin in an experimental model of lipopolysaccharide (LPS)-induced ALI. In vitro analysis revealed a notable increase in the levels of cytokine/chemokine formation, nuclear factor kappa B (NF-κB) activation, and myeloid differentiation primary response 88 (MyD88)/toll-like receptor (TLR4) expression in LPS-stimulated BEAS-2B lung epithelial cell lines that was ameliorated by aromadendrin pretreatment. In LPS-induced ALI mice, the remarkable upregulation of immune cells and IL-1β/IL-6/TNF-α levels in the bronchoalveolar lavage fluid and inducible nitric oxide synthase/cyclooxygenase-2/CD68 expression in lung was decreased by the oral administration of aromadendrin. Histological analysis revealed the presence of cells in the lungs of ALI mice, which was alleviated by aromadendrin. In addition, aromadendrin ameliorated lung edema. This in vivo effect of aromadendrin was accompanied by its inhibitory effect on LPS-induced NF-κB activation, MyD88/TLR4 expression, and signal transducer and activator of transcription 3 activation. Furthermore, aromadendrin increased the expression of heme oxygenase-1/ NAD(P)H quinone dehydrogenase 1 in the lungs of ALI mice. In summary, the in vitro and in vivo studies demonstrated that aromadendrin ameliorated endotoxin-induced pulmonary inflammation by suppressing cytokine formation and NF-κB activation, suggesting that aromadendrin could be a useful adjuvant in the treatment of ALI.

Echinacea 추출물이 단구와 단구유래 수지상세포의 유전자발현에 미치는 효과 (The Effects of Echinacea Extract on the Gene Expression of Monocytes and Monocyte-derived Dendritic Cells)

  • 박준은;김성환;최강덕;함대현;서종진
    • Clinical and Experimental Pediatrics
    • /
    • 제48권7호
    • /
    • pp.779-788
    • /
    • 2005
  • 목 적 : Echinacea는 면역증강제로 이미 사용되고 있는 재래 식물로서 최근에 Echinacea의 추출물로 단구를 중심으로 면역세포들에 의한 면역증강효과에 대한 연구가 이루어지고 있다. 본 연구는 단구와 수지상세포에서 Echinacea에 의해 유전자의 발현이 증가되는 면역관련 유전자들을 cDNA microarray chip을 사용하여 선별하고 이들을 토대로 Echinacea의 면역증강 효과에 대한 연구를 할 때 기초 자료가 되고자 하였다. 방 법 : 실험 1과 2는 3명의 공여자의 말초혈 단구로 실험하였는데 실험 1은 단구에 최종 농도가 $50{\mu}g/mL$ 되게 Echinacea를 첨가하여 1일간 배양하였고, 실험 2는 실험 1의 대조군으로서 Echinacea를 첨가하지 않고 배양하였다. 실험 3과 4는 2명의 공여자의 단구로 실험하였는데 실험 3은 GM-CSF와 IL-4를 첨가하여 5일간 배양시켜 수지상세포로 분화시킨 뒤 Echinacea를 첨가하여 1일간 더 배양시켰고, 실험 4는 실험 3의 대조군으로서 수지상세포로 분화시킨 뒤 Echinacea를 첨가하지 않고 1 일간 더 배양하였다. Echinacea에 의한 단구와 수지상세포의 유전자발현 효과를 알아보기 위해서 cDNA microarray chip을 이용하여 대조군에 대한 실험군의 각 유전자의 발현비를 구하였다. Echinacea를 첨가하지 않은 단구(실험 2의 단구)에 대한 Echinacea를 첨가한 단구(실험 1의 단구)의 각 유전자들의 발현 비를 구하였고, Echinacea를 첨가하지 않은 수지상세포(실험 4의 수지상세포)에 대한 Echinacea를 첨가한 수지상세포(실험 3의 수지상세포)의 각 유전자들의 발현비를 구하였다. 여기서 실험 1과 2에서는 세 공여자의 단구에서 나온 유전자 발현비의 결과를, 실험 3과 4에서는 두 공여자의 수지상세포에서 나온 유전자 발현비의 결과를 평균하여 그 발현비가 2.5 이상 되는 것을 의미있게 발현된 유전자로 보았다. 결 과 : Echinacea를 첨가하지 않은 단구를 대조군으로 하여 Echinacea를 첨가한 단구의 유전자 발현비가 2.5 이상으로 증가한 것들 중 면역과 관계된 유전자들은 17개였다. Echinacea를 첨가하지 않은 수지상세포를 대조군으로 하여 Echinacea를 첨가한 수지상세포의 유전자 발현비가 2.5 이상으로 증가한 것들 중 면역과 관계된 유전자들은 24개였고, 실험에 사용한 수지상세포들은 모두 미성숙 수지상세포의 특징적인 표면항원들을 가지고 있음을 유세포 분석으로 확인하였다. Echinacea가 단구와 수지상세포 둘 다에서 의미있게 유전자발현비가 증가된 것들이 7개 있었는데, 이들은 CD44, IFI 30, MRC 1, CCR 7, CLK 2, syntenin, cytochrome C oxidase subunit VIII 등의 유전자들이었다. 특히 발현비가 3.5 이상으로 높은 유전자들을 그 발현비 순으로 나열하면 단구에서는 IFI 30, CLK 2, syntenin, superoxide dismutase 2 등 4개의 유전자들이 있었고, 수지상세포에서는 somatomedin A, methyl-CpG binding domain protein 3, IFI 30, small inducible cytokine subfamily A(Cys-Cys), member 22, ubiquitin-conjugating enzyme E2L 6, hexosaminidase B, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor epsilon, CCR 7 등 8개의 유전자들이 있었다. 결 론 : 본 연구는 Echinacea가 $CD14^+$ 단구 및 수지상세포에서 발현을 증가시키는 면역관련 유전자들을 cDNA microarray chip을 이용하여 검색하였고, 향후 이 유전자들을 기초로 정량적이고 기능적으로 분석할 수 있는 토대를 마련하였다.