• Title/Summary/Keyword: Chemisorption

Search Result 184, Processing Time 0.038 seconds

DFT Study of CO2 Adsorption on the Zn12O12 Nano-cage

  • Baei, Mohammad T.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3722-3726
    • /
    • 2013
  • Covalent functionalization of a $Zn_{12}O_{12}$ nano-cage with $CO_2$ molecule in terms of energetic, geometry, and electronic properties was investigated by density functional theory method. For chemisorption configurations, the adsorption energy of $CO_2$ on the $Zn_{12}O_{12}$ nano-cage for the first $CO_2$ was calculated -1.25 eV with a charge transfer of 1.00|e| from the nano-cage to the $CO_2$ molecule. The results show that $CO_2$ molecule was significantly detected by pristine $Zn_{12}O_{12}$ nano-cage, therefore the nano-cage can be used as $CO_2$ storage. Also, more efficient binding could not be achieved by increasing the $CO_2$ concentration. For Physisorption configurations, HOMO-LUMO gap of the configurations has not changed, while slight changes have been observed in the chemisorption configurations.

Gas Sensing Properties of $MgO-Cr_2O_3-TiO_2$ Oxide ($MgO-Cr_2O_3-TiO_2$ 산화물의 가스감지 특성)

  • 양천회;홍필선;유일증;임병오
    • Journal of the Korean Society of Safety
    • /
    • v.1 no.1
    • /
    • pp.21-26
    • /
    • 1986
  • Gas sensing materials for detecting inflammable gas such as alcohol, propane, acetic acid, carbon monoxide, hydrogen were developed by utiliting $MgO-Cr_2O_3-TiO_2$ system. Between 30$0^{\circ}C$ and 50$0^{\circ}C$, reversible chemisorption becomes dominant and the electrical canduction of P-type semiconductive with the gas chemisorption. The ceramic sensor exhibits a high sensitivity to particular reducing gas such as alcohol, whereas propane and butane have little effect on the resistivity. The time response of adsorption is estimated to be about 20 sec. On the other hand, the desorption process, which corresponds to oxidation due to oxygen adsorption, take more than 60 sec. Thus the ceramic sensor can be used as a alcohol sensor in an ambient aunosphere. As the oxygen concentration is increased from 0.1 to 10 precent($10^3-10^6ppm$), the resistance decreases rapidly but stabilizes at higher concentration.

  • PDF

Surface Area Measurement by Chemisorption of Gases on Vaccum Evaporated thin Film of Platinum-Tungsten Film (화학흡착에 의한 백금 및 백금-텅스텐 진공 증착막의 표면적 측정)

  • Hakze Chon
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.420-422
    • /
    • 1975
  • The chemisorption of hydrogen and carbon monoxide, as well as the hydrogen titration of prechemisorbed oxygen was studied at $110^{\circ}$C on evaporated platinum and platinum-tungsten films. The results suggest that hydrogen titration of prechemisorbed oxygen may be used to determine the platinum surface area of platinum-tungsten film.

  • PDF

TRIBOCHEMICAL ACTIVITY OF NASCENT METAL SURFACES

  • Mori, Shigeyuki
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.3-8
    • /
    • 2000
  • Chemical nature of nascent metal surfaces which is one of the important active sources for tribochemical reactions was investigated using a newly developed method. Some enhanced activities were observed. For example, organic compounds chemisorbed on nascent gold surfaces and aromatic compounds decomposed on nascent nickel surfaces resulting in hydrogen evolution. Non-polar compounds such as organic sulfides had a higher chemisorption activity on nascent steel surfaces than polar compounds such as fatty acids and phosphates. Organic sulfides reacted directly with nascent steel surfaces and the surface was covered with metal sulfides. The activity for the chemisorption of organic compounds was closely dependent on the electronic structure of metals. Although benzene chemisorbed very easily on nascent surfaces of transition metals, it did not chemisorb ell nascent surfaces of simple metals. Boundary lubricating behaviors of extreme pressure additives were explained on the bases of the chemical activities of nascent surfaces obtained in this investigation. Under mild conditions, polar compounds such as fatty acids and phosphates were effective for boundary lubrication, because surfaces are covered with oxide layers. On the other hand, sulfides were more effective under severe conditions where the oxide layers were removed and the nascent surfaces were formed.

  • PDF

Oxygen Chemisorption on the Fe Ultrathin Films on Pt(111) Surface (Pt(111) 표면 위에 증착된 Fe 초박막의 산소 흡착에 관한 연구)

  • Park, K.H.;Cho, S.K.;Nahm, T.U.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.183-188
    • /
    • 2008
  • We have studied the chemisorption of oxygen at room temperature on Fe layers deposited on Pt(111) substrates by using core-level X-ray photoelectron spectroscopy. It was found that the oxygen atoms are chemisorbed when the thickness of the Fe layers is not larger than 6 monolayers. Upon post-annealing, it was found that part of the chemisorbed atoms are desorbed at a temperature range 600 - 700 K, after which the intermixing between Fe and Pt atoms occurs. The overall trend of this intermixing was very similar to the Fe/Pt(111) surface without oxygen exposure. The remaining oxygen adatoms, the amount of which is about a half of the total, were found to be eventually desorbed from the surface upon post-annealing at 1000 K. The binding energy of this phase was higher than that of the oxygen atoms desorbed at lower temperatures by 1.3 eV.

Theoretical Investigation of Water Adsorption Chemistry of CeO2(111) Surfaces by Density Functional Theory (전자밀도함수이론을 이용한 세륨 산화물의 (111) 표면에서 일어나는 물 흡착 과정 분석)

  • Choi, Hyuk;Kang, Eunji;Kim, Hyun You
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.267-271
    • /
    • 2020
  • Cerium oxide (ceria, CeO2) is one of the most wide-spread oxide supporting materials for the precious metal nanoparticle class of heterogeneous catalysts. Because ceria can store and release oxygen ions, it is an essential catalytic component for various oxidation reactions such as CO oxidation (2CO + O2 2CO2). Moreover, reduced ceria is known to be reactive for water activation, which is a critical step for activation of water-gas shift reaction (CO + H2O → H2 + CO2). Here, we apply van der Waals-corrected density functional theory (DFT) calculations combined with U correction to study the mechanism of water chemisorption on CeO2(111) surfaces. A stoichiometric CeO2(111) and a defected CeO2(111) surface showed different water adsorption chemistry, suggesting that defected CeO2 surfaces with oxygen vacancies are responsible for water binding and activation. An appropriate level of water-ceria chemisorption energy is deduced by vdW-corrected non-local correlation coupled with the optB86b exchange functional, whereas the conventional PBE functional describes weaker water-ceria interactions, which are insufficient to stabilize (chemisorb) water on the ceria surfaces.