• Title/Summary/Keyword: Chemisorbed bromine

Search Result 3, Processing Time 0.016 seconds

HBr Formation from the Reaction between Gas-phase Bromine Atom and Vibrationally Excited Chemisorbed Hydrogen Atoms on a Si(001)-(2 X1) Surface

  • Ree, J.;Yoon, S.H.;Park, K.G.;Kim, Y.H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1217-1224
    • /
    • 2004
  • We have calculated the probability of HBr formation and energy disposal of the reaction exothermicity in HBr produced from the reaction of gas-phase bromine with highly covered chemisorbed hydrogen atoms on a Si (001)-(2 ${\times}$1) surface. The reaction probability is about 0.20 at gas temperature 1500 K and surface temperature 300 K. Raising the initial vibrational state of the adsorbate(H)-surface(Si) bond from the ground to v = 1, 2 and 3 states causes the vibrational, translational and rotational energies of the product HBr to increase equally. However, the vibrational and translational motions of product HBr share most of the reaction energy. Vibrational population of the HBr molecules produced from the ground state adsorbate-surface bond ($v_{HSi}$ =0) follows the Boltzmann distribution, but it deviates seriously from the Boltzmann distribution when the initial vibrational energy of the adsorbate-surface bond increases. When the vibration of the adsorbate-surface bond is in the ground state, the amount of energy dissipated into the surface is negative, while it becomes positive as vHSi increases. The energy distributions among the various modes weakly depends on surface temperature in the range of 0-600 K, regardless of the initial vibrational state of H(ad)-Si(s) bond.

Reaction of Gas-Phase Bromine Atom with Chemisorbed Hydrogen Atoms on a Silicon(100)-(2${\times}$1) Surface

  • Lee, Jong Baek;Jang, Gyeong Sun;Mun, Gyeong Hwan;Kim, Yu Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.889-896
    • /
    • 2001
  • The reaction of gas-phase atomic bromine with highly covered chemisorbed hydrogen atoms on a silicon surface is studied by use of the classical trajectory approach. It is found that the major reaction is the formation of HBr(g), and it proceeds th rough two modes, that is, direct Eley-Rideal and hot-atom mechanism. The HBr formation reaction takes place on a picosecond time scale with most of the reaction exothermicity depositing in the product vibration and translation. The adsorption of Br(g) on the surface is the second most efficient reaction pathway. The total reaction cross sections are $2.53{\AA}2$ for the HBr formation and $2.32{\AA}2$ for the adsorption of Br(g) at gas temperature 1500 K and surface temperature 300 K.

Reaction between Gas-phase Hydrogen Atom and Chemisorbed Bromine Atoms on a Silicon(001)-(2X1) Surface

  • Park, Jong-Keun;Ree, Jong-Baik;Lee, Sang-Kwon;Kim, Yoo-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2271-2278
    • /
    • 2007
  • Electron transfer of a redox protein at a bare gold electrode is too slow to observe the redox peaks. A novel Nafion-riboflavin functional membrane was constructed during this study and electron transfer of cytochrome c, superoxide dismutase, and hemoglobin were carried out on the functional membrane-modified gold electrode with good stability and repeatability. The immobilized protein-modified electrodes showed quasireversible electrochemical redox behaviors with formal potentials of 0.150, 0.175, and 0.202 V versus Ag/AgCl for the cytochrome c, superoxide dismutase and hemoglobin, respectively. Whole experiment was carried out in the 50 mM MOPS buffer solution with pH 6.0 at 25 oC. For the immobilized protein, the cathodic transfer coefficients were 0.67, 0.68 and 0.67 and electron transfer-rate constants were evaluated to be 2.25, 2.23 and 2.5 s?1, respectively. Hydrogen peroxide concentration was measured by the peroxidase activity of hemoglobin and our experiment revealed that the enzyme was fully functional while immobilized on the Nafion-riboflavin membrane.