• Title/Summary/Keyword: Chemical transport reaction

Search Result 184, Processing Time 0.021 seconds

Dielectric and Electrical Characteristics of Lead-Free Complex Electronic Material: Ba0.8Ca0.2(Ti0.8Zr0.1Ce0.1)O3

  • Sahu, Manisha;Hajra, Sugato;Choudhary, Ram Naresh Prasad
    • Korean Journal of Materials Research
    • /
    • v.29 no.8
    • /
    • pp.469-476
    • /
    • 2019
  • A lead-free bulk ceramic having a chemical formula $Ba_{0.8}Ca_{0.2}(Ti_{0.8}Zr_{0.1}Ce_{0.1})O_3$ (further termed as BCTZCO) is synthesized using mixed oxide route. The structural, dielectric, impedance, and conductivity properties, as well as the modulus of the synthesized sample are discussed in the present work. Analysis of X-ray diffraction data obtained at room temperature reveals the existence of some impurity phases. The natural surface morphology shows close packing of grains with few voids. Attempts have been made to study the (a) effect of microstructures containing grains, grain boundaries, and electrodes on impedance and capacitive characteristics, (b) relationship between properties and crystal structure, and (c) nature of the relaxation mechanism of the prepared samples. The relationship between the structure and physical properties is established. The frequency and temperature dependence of the dielectric properties reveal that this complex system has a high dielectric constant and low tangent loss. An analysis of impedance and related parameters illuminates the contributions of grains. The activation energy is determined for only the high temperature region in the temperature dependent AC conductivity graph. Deviation from the Debye behavior is seen in the Nyquist plot at different temperatures. The relaxation mechanism and the electrical transport properties in the sample are investigated with the help of various spectroscopic (i.e., dielectric, modulus, and impedance) techniques. This lead free sample will serve as a base for device engineering.

Transport Properties of CO2 and CH4 using Poly(ether-block-amide)/GPTMS Hybird Membranes (Poly(ether-block-amide)/GPTMS 하이브리드 분리막을 이용한 이산화탄소와 메탄의 투과특성)

  • Lee, Keun Chul;Kim, Hyunjoon
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.653-658
    • /
    • 2016
  • Poly(ether-block-amide)(PEBAX$_{(R)}$) resin is a thermoplastic elastomer combining linear chains of hard-rigid polyamide block interspaced soft-flexible polyether block. It was believed that the hard polyamide block provides the mechanical strength and permselectivity, whereas gas transport occurs primarily through the soft polyether block. The objective of this work was to investigate the gas permeation properties of carbon dioxide and methane for PEBAX$^{(R)}$-1657 membrane, and compare with those obtained for other grade of pure PEBAX$^{(R)}$, PEBAX$^{(R)}$-2533 and PEBAX$^{(R)}$ based hybrid membranes. The hybrid membranes based PEBAX$^{(R)}$ were obtained by a sol-gel process using GPTMS ((3-glycidoxypropyl) trimethoxysilane) as the only inorganic precursor. Molecular structure and morphology of membrane were analyzed by $^{29}Si$-NMR, DSC and SEM. PEBAX$_{(R)}$-2533 membrane exhibited higher gas permeability coefficients than PEBAX$^{(R)}$-1657 membrane. This was explained by the increase of chain mobility. In contrast, ideal separation factor of $CO_2/CH_4$ for PEBAX$^{(R)}$-1657 membrane was higher than PEBAX$^{(R)}$-2533 membrane. It was explained by the decrease of diffusion selectivity caused by increase of chain mobility. For PEBAX$^{(R)}$/GPTMS hybrid membrane, gas permeability coefficients were decreased with reaction time. Gas permeability coefficient of $CH_4$ was more significantly decreased than $CO_2$. It can be explained by the reduction of chain mobility caused by the sol-gel process, and strong affinity of PEO segment with $CO_2$. Comparing with pure PEBAX$^{(R)}$-1657 membrane, ideal separation factor of $CO_2/CH_4$ for PEBAX$^{(R)}$/GPTMS hybrid membrane has decreased to 4.5%, and gas permeability coefficient of $CO_2$ has increased 3.5 times.

Photoluminescence of $Ga_2S_3$: Er Single Crystals ($Ga_2S_3$: Er 단결정의 Photoluminescence 특성 연구)

  • 진문석;김화택
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.1
    • /
    • pp.66-71
    • /
    • 1998
  • Two kinds of $Ga_2S_3:Er$ (type A and type B) single crystals were grown by the chemical transport reaction method using iodine as a transport agent. The single crystals were crystallized into a monoclinic structure. The optical energy band gaps were found to 3.375 eV for the $Ga_2S_3:Er$ (type A) single crystal and 3.365 eV fir the $Ga_2S_3:Er$ (type B) single crystal at 13K. When the $Ga_2S_3:Er$ (type A and type B) single crystals were excited by the 325 nm-line of a Cd-He laser, Photoluminescence spectra of the $Ga_2S_3:Er$ (type A) single crystal exhibited blue emission band peaked at 444 nm and green and red emission bands peaked at 518 nm and 690 nm. Pgitikynubescebce soectra if the $Ga_2S_3:Er$ (typeB) single crystal showed green and red emission bands peaked at 513 nm and 695 nm. Sharp emission peaks in the two kinds if $Ga_2S_3:Er$ single crystal were observed near 525 nm, 553 nm, 664 nm, 812 nm, 986 nm, and 1540 nm and analysed as originating from the electron transitions between the energy levels of $Er^{3+}$ ion.

  • PDF

Study on the Change of Electrical Properties of two-dimensional SnSe2 Material via Cl doping under a High Temperature Condition (이차원 SnSe2 전자소재의 Cl 도핑에 따른 고온 전도 물성 고찰)

  • Moon, Seung Pil;Kim, Sung Wng;Sohn, Hiesang;Kim, Tae Wan;Lee, Kyu Hyoung;Lee, Kimoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.49-53
    • /
    • 2017
  • We study on the change of electrical properties of two-dimensional (2D) $SnSe_2$ materials with respect to Cl doping as $SnSe_{1.994}Cl_{0.006}$ under a high temperature condition. (300~450 K) By the simple solid-state reaction method, non-and Cl-doped 2D $SnSe_2$ materials are successfully synthesized with negligible impurities as confirmed by X-ray diffraction. From the temperature dependence of resistivity, it is observed that the conduction mechanism is changed from hopping to degenerate conduction with Cl doping. By Hall effect measurement, an increase on electron carrier concentration from ${\sim}7{\times}10^{16}$ to ${\sim}3{\times}10^{18}cm^{-3}$ with Cl doping verifies that Cl is an effective electron donor which results in the encouraged carrier concentration. Detailed analysis for temperature dependent Hall mobility reveals that the electrical transports in high temperature regime are governed by the grain boundary-controlled mechanism for non-doped $SnSe_2$, which is effectively suppressed by Cl-doping as entering metallic transport regime.

Design Scheme to Develop Integrated Remediation Technology: Case Study of Integration of Soil Flushing and Pneumatic Fracturing for Metal Contaminated Soil (복합복원기술 개발을 위한 설계안 : 중금속 오염토양을 위한 토양세척과 토양파쇄의 통합 사례 연구)

  • Chung, Doug-Young;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.1
    • /
    • pp.29-37
    • /
    • 2006
  • In remediation of the contaminated soil, it requires to select at least more than two remediation technologies depending on the fate and transport phenomena through complicated reactions in soil matrix. Therefore, methodologies related to develop the integrated remediation technology were reviewed for agricultural soils contaminated with heavy metals. Pneumatic fracturing is necessary to implement deficiency because soil washing is not effective to remove heavy metals in the subsurface soil. But it needs to evaluate the characteristics such as essential data and factors of designated technology in order to effectively apply them in the site. In the remediation site, the important soil physical and chemical factors to be considered are hydrology, porosity, soil texture and structure, types and concentrations of the contaminants, and fate and its transport properties. However, the integrated technology can be restrictive by advective flux in the area which remediation is highly effective although both soil washing and pneumatic fracturing were applied simultaneously in the site. Therefore, we need to understand flow pathways of the target contaminants in the subsurface soils, that includes kinetic desorption and flux, predictive simulation modeling, and complicated reaction in heterogenous soil.

Prediction of Absorption Behavior of Carbon Dioxide on Membrane Contactor (분리막 접촉기를 통한 이산화탄소 흡수거동 예측)

  • Cho, In-Gi;Ahn, Hyo-Seong;Hahm, Moon-Ky;Kim, I.H.;Lee, Yong-Taek;Park, You-In;Lee, Kew-Ho
    • Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.39-46
    • /
    • 2000
  • To predict the absorption behavior of carbon dioxide on membrane contactor, an aqueous potassium carbonate solution as an absorbent. The reversible reactions of carbon dioxide with chemicals were considered, and the physicochemical properties of reaction rate constants, equilibrium constants, solubilities and diffusion coefficients were used as a function of concentration of carbon dioxide and the temperature. A non-wetted mode was also used as an operating condition of the membrane contactor. In these operation conditions, the effect of the following system parameters were studied : the concentration of potassium carbonate, the velocity of the absorbent and the pressure of the mixture gas. The absorption behavior of carbon dioxide caused by a facilitated transport was observed as the increment of the concentration of the absorbent. The absorption rate of carbon dioxide was increased as the absorbent velocity was increased. Furthermore, it was found that the pressure if the mixture gas and the reuse number of absorbent affect severely the absorption rate of carbon dioxide. The absorption behavior was successfully predicted by the computer simulation using the system parameters which are important for design and operation of the membrane contactor.

  • PDF

The Effect of Compost Application on Degradation of Total Petroleum Hydrocarbon in Petroleum-Contaminated Soil (유류오염 토양 내 석유계 탄화수소 화합물의 분해에 대한 퇴비의 시용 효과)

  • Kim, Sung Un;Kim, Yong Gyun;Lee, Sang Mong;Park, Hyean Cheal;Kim, Keun Ki;Son, Hong Joo;Noh, Yong Dong;Hong, Chang Oh
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.268-273
    • /
    • 2015
  • BACKGROUND: Petroleum-contaminated soil from leaking above- and underground storage tanks and spillage during transport of petroleum products is widespread environmental problem in recent years. Application of compost may be the most promising, cost-effective, and eco-friendly technology for soil bioremediation because of its advantages over physical and chemical technology. The objective of this study was to evaluate effect of compost application on degradation of total petroleum hydrocarbon (TPH) in petroleum hydrocarbon-contaminated soil.METHOD AND RESULTS: An arable soil was artificially contaminated by diesel, and compost was applied at the different rate of 0, 10, 30, and 50 Mg/ha. Concentration of TPH in the soil decreased as application rate of compost increased. Degradation efficiency was highest at compost 30 Mg/ha; however, it slightly decreased with compost 50 Mg/ha. Kinetic modeling was performed to estimate the rates of chemical reaction. The correlation coefficient (R2) values for the linear plots using the second-order model were higher than those using the first-oder model. Compost 30 and 50 Mg/ha had the fastest TPH degradation rate in the second-order model. Change of microbial population in soil with compost application was similar to that of TPH. Microbial population in the soil increased as application rate of compost increased. Increasing microbial population in the contaminated soil corresponded to decreased in TPH concentration.CONCLUSION: Conclusively, compost application for soil bioremediation could be an effective response to petroleum hydrocarbon-contaminated soil. The increase in microbial population with compost suggested that compost application at an optimum rate might enhance degradation of TPH in soil.

Glycerol Steam Reforming for Hydrogen Production on Metal-ceramic Core-shell CoAl2O4@Al Composite Structures (금속-세라믹 Core-Shell CoAl2O4@Al 구조체를 적용한 불균일계 촉매의 글리세롤 수소전환 반응특성)

  • Kim, Jieun;Lee, Doohwan
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.68-75
    • /
    • 2015
  • In this study, we investigated the structure and properties of a highly heat conductive metal-ceramic core-shell CoAl2O4@Al micro-composite for heterogeneous catalysts support. The CoAl2O4@Al was prepared by hydrothermal surface oxidation of Al metal powder, which resulted in the structure with a high heat conductive Al metal core encapsulated by a high surface area CoAl2O4 shell. For comparison, CoAl2O4 was also prepared by co-precipitation method and also utilized for a catalyst support. Rh catalysts supported on CoAl2O4@Al and CoAl2O4 were prepared by incipient wetness impregnation and characterized by N2 adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), CO chemisorption, and temperature-programmed reduction (TPR). The properties of catalysts were investigated for glycerol steam reforming reaction for hydrogen production at 550 ℃. Rh/CoAl2O4@Al exhibited about 2.8 times higher glycerol conversion turnover frequency (TOF) than Rh/CoAl2O4 due to facilitated heat transport through the core-shell structure. The CoAl2O4@Al and CoAl2O4 also showed some catalytic activities due to a partial reduction of Co on the support, and a higher catalytic activity was also found on the CoAl2O4@Al core-shell than CoAl2O4. These catalysts, however, displayed deactivation on the reaction stream due to carbon deposition on the catalysts surface.

Effect of Blue Color-deficient Sunlight on the Productivity and Cold Tolerance of Crop Plants II. On the unsaturation of mitochondrial phospholipid (청색파장(靑色波長)영역이 결여된 태양광이 작물(作物)의 생산성(生産性) 및 내냉성(耐冷性)의 향상에 미치는 효과 II. 미토콘드리아막(膜)의 인지질불포화도(燐脂質不飽和度)의 증가)

  • Jung, Jin;Kim, Chang-Sook
    • Korean Journal of Environmental Agriculture
    • /
    • v.5 no.2
    • /
    • pp.149-155
    • /
    • 1986
  • The fatty acid compositions of phospholipids extracted from leaves and leaf mitochondria, which were sampled from several horicultural plants grown under blue color-deficient sunlight (BCDS), were determined and compared with those from plants grown under natural white colored sunlight(WCS). It was found that the mitochondria isolated from plants grown under BCDS contained phospholipid whose degree of unsaturation in unit of number of double bonds per lipid molecule was remarkably higher than that from plants grown under WCS, the relative increment being $8{\sim}49%$. This was significantly larger than the relative increment, $4{\sim}8%$ for total phospholipid extracted from whole leaves grown under BCDS campared to WCS. This observation demonstrated that the blue light effect of sunlight on the chemical property of cellular membranes, as long as it was concerned with fatty acid composition, arose mainly at the mitochondrial membrane. Also observing that the degree of unsaturation of mitochondrial phospholipid was much lower than that of total phospholipid, it was interpreted that this was the consequence of rather active oxidative destruction of lipid-fatty acid components occuring in mitochondrial membrane by the reactive oxygen species, especially superoxide($O_2-$), which was known to be produced in mitochondrial inner membrane through the side reactions of the respiratory electron transport chain and also probably through the photosensitized reaction involving oxygen induced by blue colored light. Thus, it may be tentatively concluded that the extent of photosensitization in mitochondrial membrane could be considerably reduced under BCDS resulting in lowering of the $O_2-$ level in the respirating organelle The possible involvement of photodynamic action in membrane oxidation was also indicated by the fact that the typical fat-soluble antioxidant, ${\alpha}-tocopherol$, was found to be contained on a higher level in leaves under BCDS than those under WCS.

  • PDF

Ni0.5Zn0.4Cu0.1Fe2O4 Complex Ferrite Nanoparticles Synthesized by Chemical Coprecipitation Predicted by Thermodynamic Modeling

  • Kang, Bo-Sun;Park, Joo-Seok;Ahn, Jong-Pil;Kim, Kwang-Hyun;Tae, Ki-Sik;Lee, Hyun-Ju;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.231-237
    • /
    • 2013
  • Thermodynamic modeling of the $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ complex ferrite system has been adopted as a rational approach to establish routes to better synthesis conditions for pure phase $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ complex ferrite. Quantitative analysis of the different reaction equilibria involved in the precipitation of $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ from aqueous solutions has been used to determine the optimum synthesis conditions. The spinel ferrites, such as magnetite and substitutes for magnetite, with the general formula $MFe_2O_4$, where M= $Fe^{2+}$, $Co^{2+}$, and $Ni^{2+}$ are prepared by coprecipitation of $Fe^{3+}$ and $M^{2+}$ ions with a stoichiometry of $M^{2+}/Fe^{3+}$= 0.5. The average particle size of the as synthesized $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$, measured by transmission electron microscopy (TEM), is 14.2 nm, with a standard deviation of 3.5 nm the size when calculated using X-ray diffraction (XRD) is 16 nm. When $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ ferrite is annealed at elevated temperature, larger grains are formed by the necking and mass transport between the $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ ferrite nanoparticles. Thus, the grain sizes of the $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ gradually increase as heat treatment temperature increases. Based on the results of Thermogravimetric Analysis (TGA) and Differential Scanning Calorimeter (DSC) analysis, it is found that the hydroxyl groups on the surface of the as synthesized ferrite nanoparticles finally decompose to $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ crystal with heat treatment. The results of XRD and TEM confirmed the nanoscale dimensions and spinel structure of the samples.