• Title/Summary/Keyword: Chemical structure identification

Search Result 103, Processing Time 0.032 seconds

Modal parameter identification of tall buildings based on variational mode decomposition and energy separation

  • Kang Cai;Mingfeng Huang;Xiao Li;Haiwei Xu;Binbin Li;Chen Yang
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.445-460
    • /
    • 2023
  • Accurate estimation of modal parameters (i.e., natural frequency, damping ratio) of tall buildings is of great importance to their structural design, structural health monitoring, vibration control, and state assessment. Based on the combination of variational mode decomposition, smoothed discrete energy separation algorithm-1, and Half-cycle energy operator (VMD-SH), this paper presents a method for structural modal parameter estimation. The variational mode decomposition is proved to be effective and reliable for decomposing the mixed-signal with low frequencies and damping ratios, and the validity of both smoothed discrete energy separation algorithm-1 and Half-cycle energy operator in the modal identification of a single modal system is verified. By incorporating these techniques, the VMD-SH method is able to accurately identify and extract the various modes present in a signal, providing improved insights into its underlying structure and behavior. Subsequently, a numerical study of a four-story frame structure is conducted using the Newmark-β method, and it is found that the relative errors of natural frequency and damping ratio estimated by the presented method are much smaller than those by traditional methods, validating the effectiveness and accuracy of the combined method for the modal identification of the multi-modal system. Furthermore, the presented method is employed to estimate modal parameters of a full-scale tall building utilizing acceleration responses. The identified results verify the applicability and accuracy of the presented VMD-SH method in field measurements. The study demonstrates the effectiveness and robustness of the proposed VMD-SH method in accurately estimating modal parameters of tall buildings from acceleration response data.

The Estimation of Fatigue Strength of Structure with Practical Dynamic Force by Inverse Problem and Lethargy Coefficient (구조물의 피로강도평가를 위한 역문제 및 무기력계수에 의한 실동하중해석)

  • 양성모;송준혁;강희용;노홍길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.106-113
    • /
    • 2004
  • Most of mechanical structures are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. In this study, the dynamic response of vehicle structure to external forces is classified an inverse problem involving strains from the experiment and the analysis. The practical dynamic forces are determined by the combination of the analytical and experimental method with analyzed strain by quasi-static finite element analysis under unit force and with measured strain by a strain gage under driving load, respectively. In a stressed body, inter-molecular chemical bonds are failed beyond the certain magnitude. The failure of molecular structure in material is considered as a time process of which rate is determined by mechanical stress. That is, the failure of inter-molecular chemical bonds is the fatigue lift of material. This kinetic concept is expressed as lethargy coefficient. And S-N curve is obtained with the lethargy coefficient from quasi-static tensile test. Equivalent practical dynamic force is obtained from the identification of practical dynamic force for one loading point. Using the practical dynamic force and S-N curve, fatigue life of a window pillar is analyzed with FEM under the identified force by the procedure of above mentioned.

Structure Identification of 1,2-Disubstituted Chiral Calix[4]arene : X-Ray and NMR Analysis of 25-(3,5-Dinitrobenzoyloxy)-26-methoxy-27,28-dihydroxycalix[4]arene

  • 박영자;신정미;남계춘;김종민;국승근
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.7
    • /
    • pp.643-647
    • /
    • 1996
  • 1,2-Disubstituted chiral calix[4]arene "25-(3,5-dinitrobenzoyloxy)-26-methoxy-27,28-dihydroxycalix[4]arene" was synthesized by the reaction of 25-(3,5-dinitrobenzoyloxy)-calix[4]arene with methyl iodide in the presence of K2CO3. Methylation was occurred at the 26-position of calix[4]arene. The partial cone conformation and 1,2-substitution were characterized based on the 1H NMR, 13C NMR and X-ray diffraction analysis. The crystal structure has been determined by X-ray diffraction method. The crystals are orthorhombic, Pbca, a=10.652(1), b=17.687(1), c=32.247(3) Å, Z=8, V=6075.4(9) Å3, Dc=1.38gcm-3. The intensity data were collected on an Enraf-Nonius CAD-4 Diffractometer with a graphite monochromated Cu-Kα radiation. The structure was solved by direct method and refined by full-matrix least-squares methods to a final R value of 0.050 for 2368 observed reflections. The molecule is in the partial cone conformation. It has two strong intramolecular hydrogen bonds of O(1D)-H…O(1C)-H…O(1B).

In silico target identification of biologically active compounds using an inverse docking simulation

  • Choi, Youngjin
    • CELLMED
    • /
    • v.3 no.2
    • /
    • pp.12.1-12.4
    • /
    • 2013
  • Identification of target protein is an important procedure in the course of drug discovery. Because of complexity, action mechanisms of herbal medicine are rather obscure, unlike small-molecular drugs. Inverse docking simulation is a reverse use of molecular docking involving multiple target searches for known chemical structure. This methodology can be applied in the field of target fishing and toxicity prediction for herbal compounds as well as known drug molecules. The aim of this review is to introduce a series of in silico works for predicting potential drug targets and side-effects based on inverse docking simulations.

Phase Identification of Nano-Phase Materials using Convergent Beam Electron Diffraction (CBED) Technique

  • Kim, Gyeung-Ho;Ahn, Jae-Pyoung
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.47-56
    • /
    • 2006
  • Improvements are made to existing primitive cell volume measurement method to provide a real-time analysis capability for the phase analysis of nanocrystalline materials. Simplification is introduced in the primitive cell volume calculation leading to fast and reliable method for nano-phase identification and is applied to the phase analysis of Mo-Si-N nanocoating layer. In addition, comparison is made between real-time and film measurements for their accuracy of calculated primitive cell volume values and factors governing the accuracy of the method are determined. About 5% accuracy in primitive cell determination is obtained from camera length calibration and this technique is used to investigate the cell volume variation in WC-TiC core-shell microstructure. In addition to chemical compositional variation in core-shell type structure, primitive cell volume variation reveals additional information on lattice coherency strain across the interface.

Isolation, Purification, and Structural Identification of an Antifungal Compound from a Trichoderma Strain

  • Li, Chong-Wei;Song, Rui-Qing;Yang, Li-Bin;Deng, Xun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1257-1264
    • /
    • 2015
  • Trichoderma strain T-33 has been demonstrated to have inhibitory effect on the fungus species Cytospora chrysosperma. Here, an active antifungal compound was obtained from Trichoderma strain T-33 extract via combined separation technologies, including organic solvent extraction, liquid chromatography, and thin-layer chromatography. The purified compound was further characterized by advanced analytical technologies to elucidate its chemical structure. Results indicated that the active antifungal compound in Trichoderma strain T-33 extract is 2,5-cyclohexadiene-1,4-dione-2,6-bis (1,1-dimethylethyl).

Polymer Quality Control Using Subspace-based Model Predictive Control with BLUE Filter

  • Song, In-Hyoup;Yoo, Kee-Youn;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.357-357
    • /
    • 2000
  • In this study, we consider a multi-input multi-output styrene polymerization reactor system for which the monomer conversion and the weight average molecular weight are controlled by manipulating the jacket inlet temperature and the feed flow rate. The reactor system is identified by using a linear subspace identification method and then the output feedback model predictive controller is constructed on the basis of the identified model. Here we use the Best Linear Unbiased Estimation (BLUE) filter as a stochastic estimator instead of the Kalman filter. The BLUE filter observes the state successfully without any a priori information of initial states. In contrast to the Kalman filter, the BLUE filter eliminates the offset by observing the state of the augmented system regardless of a priori information of the initial state for an integral white noise augmented system. A BLUE filter has a finite impulse response (FIR) structure which utilizes finite measurements and inputs on the most recent time interval [i-N, i] in order to avoid long processing times.

  • PDF

Antifungal Activity of Streptomyces sp. Against Puccinia recondita Causing Wheat Leaf Rust

  • Yi, Yong-Sub;Kim, Seung-Hyun;Kim, Min-Woo;Choi, Gyung-Ja;Cho, Kwang-Yun;Song, Jae-Kyeong;Lim, Yoong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.422-425
    • /
    • 2004
  • To discover a potent strain against wheat leaf rust, soil samples collected from Ilgamho, Seoul, Korea were tested in vivo and a strain belonging to Streptomyces sp. was found to show good antifungal activity when fermented in a broth. The identification of the strain was carried out based on 16S rDNA analysis, and the active compound was separated from the fermented broth. Even though its structure was not determined completely, the authors report the results obtained so far indicate that the fermented broth of the strain showed activity against wheat leaf rust. Therefore, we propose that this may be a potential novel strain showing antifangal activity against Puccinia recondita.

Identification of a novel type of small molecule inhibitor against HIV-1

  • Kim, Byung Soo;Park, Jung Ae;Kim, Min-Jung;Kim, Seon Hee;Yu, Kyung Lee;You, Ji Chang
    • BMB Reports
    • /
    • v.48 no.2
    • /
    • pp.121-126
    • /
    • 2015
  • Here we report a new chemical inhibitor against HIV-1 with a novel structure and mode of action. The inhibitor, designated as A1836, inhibited HIV-1 replication and virus production with a 50% inhibitory concentration ($IC_{50}$) of $2.0{\mu}M$ in an MT-4 cell-based and cytopathic protection antiviral assay, while its 50% cytotoxic concentration ($CC_{50}$) was much higher than $50{\mu}M$. Examination of the effect of A1836 on in vitro HIV-1 reverse transcriptase (RT) and integrase showed that neither were molecular targets of A1836. The characterization and re-infection assay of the HIV-1 virions generated in the presence of A1836 showed that the synthesis of early RT products in the cells infected with the virions was inhibited dose-dependently, due in part to abnormal protein formation within the virions, thus resulting in an impaired infectivity. These results suggest that A1836 might be a novel candidate for the development of a new type of HIV-1 inhibitor.

Sensor Applications of Microporous Conjugated Polymers

  • Gwak, Gi-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.125-125
    • /
    • 2014
  • In 1991, Prof. Toshio Masuda of Kyoto University for the first time synthesized a representative of diphenylacetylene polymer derivatives, poly[1-phenyl-2-(p-trimethylsilyl)phenylacetylene] [PTMSDPA]. This polymer is highly soluble nevertheless a ultra-high molecular weight (Mw) of > $1.0{\times}10^6$ which showed excellent chemical, physical, mechanical properties [1]. As one of the most interesting features of PTMSDPA, Prof. Katsumi Yoshino of Osaka Univ. reported that this polymer emits an intense fluorescence (FL) in a visible region because of the effective exciton confinement within the resonant structure between the polyene pi-conjugated chain and side phenyl full-aromatic bulky groups [2]. Very recently, Prof. Ben-Zhong Tang of Hong-Kong Institute of Science and Technology clarified the idea that the FL emission of disubstituted acetylene polymer derivatives originates from intramolecular excimer due to the face-to-face stacking of the side phenyl groups [3]. Thus, to know what influence to intramolecular excimer emission in the film as well as to further understand how the intramolecular excimer forms in the film became more crucial in order to further precisely design the optimized molecular structure for highly emissive, substituted acetylene polymers in the solid state. In recent studies, we have focused our interests on the origin of the FL emission in order to expand our knowledge to developments of novel sensor applications. It was found that the intramolecular phenyl-pheyl stack structure of PTMSDPA in film was variable in response to various external chemical stimuli. Using PTMSDPA and its derivatives, we have developed various potential applications such as latent fingerprint identification, viscosity sensor, chemical-responsive actuator, gum-like soft conjugated polymer, and bioimaging. The details will be presented in the 49th KVS Symposium held in Pyong Chang city.

  • PDF