• Title/Summary/Keyword: Chemical reactivity

Search Result 816, Processing Time 0.021 seconds

Chemical Reactivity of N-Iodopyridinium Dichlorodate as a Lubricant Additive (潤滑添加劑로서의 N-Iodopyridinium Dichlorodate의 화학반응성)

  • Moon Tak Jin;Kwon Oh Seung
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.43-49
    • /
    • 1975
  • Small amounts of iodine compound in mineral oils are usually effective in reducing friction of metallic surfaces. Such improvement in frictional behaviour of wear characteristics was explained by the formation of a diiodide layer lattice structure at the metallic contact surfaces. The lubrication mechanism, however, by which organoiodine compounds functions is not based on the formation of such lattice structure iodide. It was tested and shown, by a static surface chemical reactivity test, wear and EP tests, and a hot wire method, that compound such as N-iodopyridinium dichlorodate, a double charge transfer complex, reacted with metals as an interhalogen compound and that the resultant thin film product reduced appreciable the friction of metallic surfaces, more than compounds such as methyl iodide, diiodomethane, and iodoform. These results suggest that the action of iodine, included in organoiodine compounds, is not that of a classical layer structure iodide, and an entirely new mechanism may be derived from a further studies on charge transfer complex compounds of organoiodine compounds.

  • PDF

Effects of experimental conditions on synthesis of titanium carbide crystallites

  • Choi, Jeong-Gil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.2
    • /
    • pp.80-84
    • /
    • 2010
  • The temperature-programmed reduction of titanium oxide ($TiO_2$) with pure $CH_4$ was used for the preparation of titanium carbide crystallites. The synthesized materials had the different surface areas, indicating that the structural properties of these materials were strong functions of two different heating rates and space velocity employed. The titanium carbide crystallites were active for $NH_3$ decomposition. Since the reactivity varied with changes in the particle size, ammonia decomposition reactivity over the titanium carbides crystallites appeared to be related to the different active species. The reactivities of titanium carbide crystallites were two and three times lower than those of the vanadium and molybdenum carbide crystallites, respectively. These results suggested that the difference in activities might be related to the degree of electron transfer between metals and carbon.

Alkali- Aggregate Reaction of the Crushed Stones Depending on the ASTM C 227 and C 1260 Test Method (ASTM C 227과 ASTM C 1260에 따른 쇄석 골재의 알칼리-골재 반응성)

  • 전쌍순;이효민;진치섭;황진연;이진성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.13-18
    • /
    • 2003
  • The concrete structure can be easily damaged due to alkali-aggregate reaction. The alkali-aggregate reaction is a reaction between the alkalies(K or Na) in cement and an unstable mineral of the aggregates. There are several test methods to identify alkali reactivity of aggregates. In general, crushed stones are tested by petrographic examination, chemical method and 모르타르 바 method. This study tested alkali-aggregate reactivity of crushed stones that has different rock types such as granitic, volcanic, metamorphic and sedimentary rocks. Samples are collected from 12 local aggregate production companies. Alkali-reactivity of various rock types was evaluated by using ASTM C 227 and C 1260, and compared the test results of two test methods.

  • PDF

Chemical Looping Combustion Characteristics of Coal and Char in a Batch Type Fluidized Bed Reactor (회분식 유동층 반응기에서 석탄과 촤의 매체순환연소 특성)

  • Ryu, Ho-Jung;Hyun, Ju-Soo;Kim, Young-Joo;Park, Yeong-Seong;Park, Moon-Hee
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.6
    • /
    • pp.884-894
    • /
    • 2011
  • Effects of temperature, volatile content, particle diameter and solid input weight were investigated in the batch fluidized bed reactor using OCN703-1100 particle as oxygen carrier and Roto coal and char as fuels. Two solid fuels represented the best reactivity at different temperature, $900^{\circ}C$ for Roto coal and $950^{\circ}C$ for char, respectively. However, we selected $900^{\circ}C$ as the best operating temperature because the improvement of reactivity of char at $950^{\circ}C$ was negligible. Char represented better reactivity than Roto coal because char contains low volatile than Roto coal. For both solid fuels, reactivities were improved with increasing of the particle diameter. These results were explained by solid mixing tests in a transparent fluidized bed using two char particles having different particle size ranges and OCN703-1100 particle. The bigger particle showed better solid mixing with OCN703-1100 particle, and therefore, represented better reactivity. For both solid fuels, reactivities were improved with increasing of the solid input weight within the experimental conditions of this study because the weight of coarse particles increased with the solid input weight increased, and therefore, these coarse particles can mix well with the oxygen carrier.

Reactivity of Phospholipase D toward Phosphatidylcholines with Different Length of Acyl Chains (길이가 틀린 아실사슬을 갖는 콜린 인지질에 대한 포스포리파제 D의 반응성)

  • Koh, Eun-Hie;Park, Insook
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.9
    • /
    • pp.630-634
    • /
    • 1996
  • In order to explore a substrate specificity for cabbage phospholipase D, we examined the PLD reactivity toward the phosphatidylcholines with different chain length of acyl groups. The selected acyl chains were the saturated fatty acid of $C_8:0,\;C_{12}:0,\;C_{16}:0,\;C_{20}:0$. The reactivity of these phospholipids were dependent largely on the ratio of PC : SDS. The PC : SDS ratio showing the optimal PLD activity were found to be 1:1.4, 1:2.2, 1:2.5, and 1:3.6 respectively as the increase of the acyl chain length. Likewise the optimum temperature for the maximal PLD activity were altered markedly to 25$^{\circ}C$, 30$^{\circ}C$, 35$^{\circ}C$, 45$^{\circ}C$ when the length of acyl chains increased. On the contrary the pH and concentration of $Ca^{2+}$ necessary for the optimum PLD activity were not altered significantly. The kinetic parameter $V_{max}$ for short acyl chain substrate was greater than the values for the longer acyl chain, which indicates the fastest rate of hydrolysis. By the same token, the reactivity of longer chain substrate became slower for the hydrolysis activity.

  • PDF

Functional Monomers and Polymers (Ⅰ). Polymerization of Acryloyl-Type Monomer Containing Lactam Ring (관능성 단량체 및 중합체 (제1보). Lactam 고리를 함유하고 있는 Acryloyl 형 단량체의 중합)

  • S. K. Noh;G. S. Sur;Sam K. Choi
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.64-72
    • /
    • 1980
  • The synthesis of N-acrylylpyrrolidone has been carried out by the reaction of pyrrolidone and acrylyl chloride. The study on the copolymer of N-acrylylpyrrolidone and styrene is attempted.The copolymerization of N-acrylylpyrrolidone and styrene is carried out in benzene.Monomer reactivity ratio of N-acrylylpyrrolidone and styrene was calculated by Fineman and Ross equation. It is observed that the copolymer of N-acrylylpyrrolidone and styrene has random distributed acyl-lactam function on the vinyl polymer backbone.

  • PDF