• 제목/요약/키워드: Chemical reaction kinetics

검색결과 736건 처리시간 0.031초

Folding Mechanism of WT* Ubiquitin Variant Studied by Stopped-flow Fluorescence Spectroscopy

  • Park, Soon-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2877-2883
    • /
    • 2010
  • The folding kinetics of $WT^*$ ubiquitin variant with valine to alanine mutation at sequence position 26 (HubWA) was studied by stopped-flow fluorescence spectroscopy. While unfolding kinetics showed a single exponential phase, refolding reaction showed three exponential phases. The semi-logarithmic plot of urea concentration vs. rate constant for the first phase showed v-shape pattern while the second phase showed v-shape with roll-over effect at low urea concentration. The rate constant and the amplitude of the third phase were constant throughout the urea concentrations, suggesting that this phase represents parallel process due to the configurational isomerization. Interestingly, the first and second phases appeared to be coupled since the amplitude of the second phase increased at the expense of the amplitude of the first phase in increasing urea concentrations. This observation together with the roll-over effect in the second folding phase indicates the presence of intermediate state during the folding reaction of HubWA. Quantitative analysis of Hub-WA folding kinetics indicated that this intermediate state is on the folding pathway. Folding kinetics measurement of a mutant HubWA with hydrophobic core residue mutation, Val to Ala at residue position 17, suggested that the intermediate state has significant amount of native interactions, supporting the interpretation that the intermediate is on the folding pathway. It is considered that HubWA is a useful model protein to study the contribution of residues to protein folding process using folding kinetics measurements in conjunction with protein engineering.

Bromine-Exchange Reaction of Antimony Tribromide with Benzyl Bromide in Nitrobenzene and in 1,2,4-Trichlorobenzene$^*$

  • Choi Sang Up;Pae Young Il;Rhyu Sok Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제3권2호
    • /
    • pp.55-60
    • /
    • 1982
  • The rate of the bromine-exchange reaction of antimony tribromide with benzyl bromide in nitrobenzene or 1,2,4-trichlorobenzene has been measured, using Br-82 labelled antimony tribromide. The result of the study indicates that the exchange reaction is first order with respect to benzyl bromide, and either second or first order with respect to antimony tribromide depending on its concentrations. The second-order kinetics with respect to antimony tribromide have been observed at relatively high $[SbBr_3]$ concentrations, and the first-order kinetics at lower $[SbBr_3]$ concentrations. Reaction mechanisms are proposed for the exchange reaction.

Investigation of Cure Kinetics and Storage Stability of the o-Cresol Novolac Epoxy Nanocomposites with Pre-intercalated Phenolic Hardeners

  • Hwang, Tae-Yong;Lee, Jae-Wook;Lee, Sang-Min;Nam, Gi-Joon
    • Macromolecular Research
    • /
    • 제17권2호
    • /
    • pp.121-127
    • /
    • 2009
  • The cure kinetics of the epoxy-layered, silicate nanocomposites were studied by differential scanning calorimetry under isothermal and dynamic conditions. The materials used in this study were o-cresol novolac epoxy resin and phenol novolac hardener, with organically modified layered silicates. Various kinetic parameters, including the reaction order, activation energy, and kinetic rate constants, were investigated, and the storage stability of the epoxy-layered silicate nanocomposites was measured. To synthesize the epoxy-layered silicate nanocomposites, the phenolic hardener underwent pre-intercalation by layered silicate. From the cure kinetics analyses, the organically modified layered silicate decreased the activation energy during cure reaction in the epoxy/phenolic hardener system. In addition, the storage stability of the nanocomposite with the pre-intercalated phenolic hardener was significantly increased compared to that of the nanocomposite with direct mixing of epoxy, phenolic hardener, and layered silicate. This was due to the protective effect of the reaction between onium ions and epoxide groups.

The Growth Kinetics of Tin Oxide Films from Tetramethyltin

  • 이상운;윤천호
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권9호
    • /
    • pp.1031-1034
    • /
    • 1999
  • Tin oxide films have been grown employing the chemical vapor deposition technique under reduced pressure conditions using tetramethyltin as the precursor and oxygen as the oxidant. An activation energy derived for the deposition reaction under representative deposition conditions has a value of 89±3 kJ mol-1, suggesting a typical kinetic control. Deposition rates of tin oxide films exhibit a near first order dependence on tetramethyltin partial pressure and a zeroth order dependence on oxygen partial pressure. This study provides the first quantitative information about the growth kinetics of tin oxide films from tetramethyltin by the cold-wall low-pressure chemical vapor deposition.

유변학적 성질 측정으로 측정한 고분자 계면에서의 반응 kinetics와 morphology 변화 (Reaction Kinetics and Morphological Changes at Polymer-polymer Interface measured by Rheological Properties)

  • Kim, Hwang-Yong;Unyong Jeong;Kim, Jin-Kon
    • 한국유변학회:학술대회논문집
    • /
    • 한국유변학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.25-27
    • /
    • 2002
  • In this study we investigated the reaction kinetics by a convenient but useful method-rheology to characterize the interface between two immiscible blends with a Reactive compatibilizer. Also, we made an attempt to correlate changes of interface roughness with rheological properties. The blend systems employed in this study was mono-carboxylated polystyrene (PS-mCOOH) and an poly(methyl methacrylate-ran-glycidylmethacrylate) (PMMA-GMA). PS-mCOOH was synthesized by an anionic polymerization and PMMA-GMA by a free radical polymerization. We prepared two plates of each polymer using compression molding with a smooth surface molder, then put one upon another. As soon as these two plates welds together inside a rheometer under nitrogen environment, the torque and moduli were obtained with reaction time at different temperatures. Through the analysis of this modulus change with reaction time, we estimated interfacial reaction and roughening. The increment of modulus in initial state can be correlated to the extent of reaction. We obtained the reaction kinetic constant by fitting appropriate kinetic equation into experimental data. We also showed that increment of modulus in later state was due to by roughened interface.

  • PDF

PVS 유도체에 대한 L-Cysteine의 친핵성 첨가반응에 관한 연구 (A Study on the Nucleophilic Addition Reaction of L-cysteine for PVS)

  • 이기창;이광일;윤철훈;황성규;공승대
    • 한국응용과학기술학회지
    • /
    • 제12권2호
    • /
    • pp.99-105
    • /
    • 1995
  • Phenylvinylsulfone derivatives were synthesized by Kirners condition. The structure of these compounds were ascertained by means of ultraviolet, melting point, IR and $^1H-NMR$ spectra. The nucleophilic addtion reaction kinetics of L-cysteiene for phenylvinylsulfone was investigated by ultraviolet spectrophotometery in 40% $EtOH-H_2O$ at $25^{\circ}C$. The rate equations which were applied over a wide pH $1.0{\sim}13.0$ range. On the basis of general base catalysis and confirmation of addtion reaction product, the nucleophilic addtion reaction kinetics of L-cysteiene for phenylvinylsulfone were measured by the pH change. From the result of the above caption, a plausible nucleophilic addtion reaction mechanism of L-cysteiene for phenylvinylsulfone was proposed. These compounds may by used ad the starting materials for the preparation of the engineering plastics or the germicide.

2-Fluorenylidene chalcone유도체에 대한 Thioglycolic acid의 친핵성 첨가 반응에 관한 연구 (Nucleophilic Addition Reaction of Thioglycolic acid to 2-Fluorenylidene chalcone Derivatives)

  • 이기창;이광일;황용현;류정욱;윤철훈
    • 한국응용과학기술학회지
    • /
    • 제13권1호
    • /
    • pp.107-113
    • /
    • 1996
  • Fluorenylidene chalcone derivatives were synthesized by condensation. The structure of these compounds were ascertained by means of UV, melting point, IR and $^1H-NMR$ spectra. The nucleophilic addition reaction kinetics of Thioglycolic acid to fluorenylidene chalcone was investigate by UV in 20% $dioxane-H_2O$ at $25^{\circ}C$. The rate equation which were applied over a wide $pH1.0{\sim}13.0$ range. On the basis of general base catalysis and confirmation of addition reaction product, the nucleophilic addtion reaction kinetics of thioglycolic acid to fluorenylidene chalcone were measured by the pH change. From the result of the above caption, a plausible nucleophilic addition reaction mechanism of thioglycolic acid to fluorenylidene chalcone was proposed. These compounds may be used as the starting materials for the preparation of the engineering plastics or the germicide.

A new nano-ZnO/perlite as an efficient catalyst for catalytic ozonation of azo dye

  • Shokrollahzadeh, Soheila;Abassi, Masoud;Ranjbar, Maryam
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.513-520
    • /
    • 2019
  • In this investigation, nano ZnO was sonochemically synthesized by a novel method using a methionine precursor. A narrow size distribution (41-50 nm) of nano ZnO was achieved that was immobilized on perlite and applied as a catalyst in catalytic ozonation. The catalyst was characterized by fourier transform infrared spectroscopy, BET surface area, and field emission scanning electron microscope. The ozonation of recalcitrant Remazol black 5 (RB5) di-azo dye solution by means of the synthesized catalyst was investigated in a bubble column slurry reactor. The influence of pH values (7, 9, 11), catalyst dosage (8, 12, 15, $20g\;L^{-1}$) and reaction time (10, 20, 30, 60 min) was investigated. Although the dye color was completely removed by single ozonation at a higher reaction time, the applied nanocatalyst improved the dye declorination kinetics. Also, the degradation of the hazardous aromatic fraction of the dye was enhanced five-times by catalytic ozonation at a low reaction time (10 min) and a neutral pH. The second-order kinetics was best fitted in terms of both RB5 color and its aromatic fraction removal. The total organic carbon analysis indicated a significant improvement in the mineralization of RB5 by catalytic ozonation using the nano-ZnO/perlite catalyst.

농후 연소 추진제의 Soot 생성 특성에 관한 연구 (Study of Soot Formation in Fuel Rich Combustion)

  • 유정민;이창진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.143-147
    • /
    • 2007
  • 케로신과 디젤은 단일 구성물이 아닌 여러 가지 탄화수소 연료로 이루어진 혼합연료이며 화학반응 메커니즘에 대한 모델링이 매우 어려운 실정이다. 본 연구에서는 Dagaut가 개발한 298 화학종, 2352 화학반응 단계를 이용하였으며 완전혼합반응기 연소모델을 적용하여 농후 연소 비평형 화학 반응을 계산하였다. 또한 Frenklach의 soot 모델을 적용하여 soot 생성 연구를 수행하였으며 Dagaut의 화학반응 모델에 Appel이 제안한 화학 반응 단계를 추가하여 케로신과 디젤 연료에 대한 soot 모사를 가능하게 하였으며 수정된 모델은 간단한 soot 반응 메커니즘을 사용하였음에도 불구하고 soot 생성 예측이 가능하였다.

  • PDF