• Title/Summary/Keyword: Chemical profiling

Search Result 133, Processing Time 0.025 seconds

The Study of Color and Hardness of TiN Thin Film by UBM Sputtering System (UBM Sputtering System에 의한 TiN막의 색상과 경도에 관한 연구)

  • Park, Moon Chan;Lee, Jong Geun;Joo, Kyung Bok
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • Purpose: TiN films were deposited on sus304 by unbalanced magnetron sputtering system which was designed and developed as unbalancing the strength of the magnets in the magnetron electrode. The color and hardness of deposited TiN films was investigated. Methods: The cross sections of deposited films on silicon wafer were observed by SEM to measure the thickness of the films, the components of the surface of the films were identified by XPS, the components of the inner parts of the films were observed by XPS depth profiling. XPS high resolution scans and curve fittings of deposited films were performed for quantitative chemical analysis, Vickers micro hardness measurements of deposited films were performed with a nano indenter equipment. Results: The colors of deposited films gradually changed from light gold to dark gold, light violet, and indigo color with increasing of the thickness. It could be seen that the color change come from the composite change of three compound,$TiO_{x}N_{y}$, $TiO_2$, TiN. Especially, the composite change of$TiO_{x}N_{y}$ compound was thought to affect the color change with respect to thickness. Conclusions: Deposited films had lower than the value of general TiN film in Vickers hardness, which was caused by mixing three TiN, $TiO_2$,$TiO_{x}N_{y}$ compound in the deposited films. The increasing and decreasing of micro hardness with respect to thickness was thought to have something to do with the composite of TiN in the films.

  • PDF

RNA helicase DEAD-box-5 is involved in R-loop dynamics of preimplantation embryos

  • Hyeonji Lee;Dong Wook Han;Seonho Yoo;Ohbeom Kwon;Hyeonwoo La;Chanhyeok Park;Heeji Lee;Kiye Kang;Sang Jun Uhm;Hyuk Song;Jeong Tae Do;Youngsok Choi;Kwonho Hong
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.1021-1030
    • /
    • 2024
  • Objective: R-loops are DNA:RNA triplex hybrids, and their metabolism is tightly regulated by transcriptional regulation, DNA damage response, and chromatin structure dynamics. R-loop homeostasis is dynamically regulated and closely associated with gene transcription in mouse zygotes. However, the factors responsible for regulating these dynamic changes in the R-loops of fertilized mouse eggs have not yet been investigated. This study examined the functions of candidate factors that interact with R-loops during zygotic gene activation. Methods: In this study, we used publicly available next-generation sequencing datasets, including low-input ribosome profiling analysis and polymerase II chromatin immunoprecipitation-sequencing (ChIP-seq), to identify potential regulators of R-loop dynamics in zygotes. These datasets were downloaded, reanalyzed, and compared with mass spectrometry data to identify candidate factors involved in regulating R-loop dynamics. To validate the functions of these candidate factors, we treated mouse zygotes with chemical inhibitors using in vitro fertilization. Immunofluorescence with an anti-R-loop antibody was then performed to quantify changes in R-loop metabolism. Results: We identified DEAD-box-5 (DDX5) and histone deacetylase-2 (HDAC2) as candidates that potentially regulate R-loop metabolism in oocytes, zygotes and two-cell embryos based on change of their gene translation. Our analysis revealed that the DDX5 inhibition of activity led to decreased R-loop accumulation in pronuclei, indicating its involvement in regulating R-loop dynamics. However, the inhibition of histone deacetylase-2 activity did not significantly affect R-loop levels in pronuclei. Conclusion: These findings suggest that dynamic changes in R-loops during mouse zygote development are likely regulated by RNA helicases, particularly DDX5, in conjunction with transcriptional processes. Our study provides compelling evidence for the involvement of these factors in regulating R-loop dynamics during early embryonic development.

Studies of vindoline metabolism in Catharanthus roseus cell cultures using deuterium-labeled tabersonine (Catharanthus roseus 세포 배양액에 deuterium이 치환된 tabersonine을 사용한 vindoline 생합성 경로 연구)

  • Lee, Soo;Lee, Hyang-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.71-80
    • /
    • 2012
  • Vinca alkaloids produced from Catharanthus roseus are one of the most important natural product drugs in treatments of human cancers. These anticancer drugs are derived from coupling of the two monomeric indole alkaloids, catharanthine and vindoline. In order to investigate vindoline biosynthesis, tabersonine-$CD_3$ 1a is synthesized to use as a deuterium labeled precursor, which is distinguished clearly from the natural counterpart. We show that these deuterium labeled tabersonine 1a are successfully incorporated into the vindoline biosynthetic pathway to yield three deuterated vindoline intermediates. 16-Hydroxytabersonine-$CD_3$ (m/z 356) 2a, 16-Methoxytabersonine-$CD_3$ (m/z 370) 3a, 16-Methoxy-2,3-dihydro-3-hydroxytabersonine-$CD_3$ (m/z 388) 4a are produced from the cell suspension culture measured by UPLC/MS at 5 and 13 days after feeding tabersonine. The conversion rates from 1a to 2a and 2a to 3a are fast, whereas that from 3a to 4a is much slower. This indicates that the rate determining step among the first three vindoline biosynthesis is the last step. As a result of the slow conversion rate from 3a to 4a, the accumulation level of 16-Methoxytabersonine-$CD_3$ 3a is significantly increased up to 13 days. The accumulation ratio among 2a, 3a and 4a is 1, 2 and 0.1 at 5 days. However, the peaks of desacetoxyvindoline-$CD_3$ 5a, deacetylvindoline-$CD_3$ 6a and vindoline-$CD_3$ 7a are not found from the cell extracts even after 13 days of incubation which may indicate no presence of their corresponding enzymes.