• Title/Summary/Keyword: Chemical laboratory

Search Result 3,549, Processing Time 0.038 seconds

Enu is a Powerful Mutagen for Development Mutant Mice -Sixty-Six Mutants From Enu Mutagenesis Program in Kit/Krict-

  • Seokjoo Yoon;Cho, Kyu-Hyuk;Cho, Jae-Woo;Lee, Phil-Soo;Kim, Yang-Eon;Cha, Dal-Sun;Park, Han-Jin;Kang, Min-Sung;Nam, Yoon-Yi
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.184-184
    • /
    • 2003
  • ENU(ethylnitrosourea) mutagenesis has been carrying out since 1999 in Korea Institute of Toxicology (KIT), Korea Research Institute Chemical of Technology (KRlCT). We have chosen BALB/c and C57BL/6 and screened for dominant and recessive mutants. Four hundred and twenty one males(GO) have been injected with ENU, 150, 200, 250 and 300 mg/kg body weight, twice, one week apart.(omitted)

  • PDF

Piperoctadecalindine, a New Piperidine Alkaloid from Piper retrofractum Fruits

  • Ahn Jong Woong;Lee Chong Ock;Kim Eun Joo;Zee Ok Pyo;Kim Hyung Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.388-391
    • /
    • 1992
  • A chemical investigation of the fruits of Piper retrofractum (Piperaceae) has led to the isolation and characterization of a novel piperidine alkaloid, piperoctadecalidine together with three known alkaloids piperine, pipernonaline and guineensine. The structure of the new compound was detemined to be (2E,4E,14Z)-N-(2,4,14-Octadecatrienoyl) piperidine by spectral and synthetic methods.

Influence of "Historical Effects" on the Rheological Properties of a Polyacrylonitrile Copolymer Solution

  • Cheng, Yumin;Zhang, Huibo;Zhang, Shuangkun;Liu, Weiwei;Wang, Jing;Cheng, Run;Ryu, SeungKon;Jin, Riguang
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • Polyacrylonitrile (PAN) copolymers of different molecular weights were synthesized by a suspension polymerization and precipitation polymerization method. The rheology behaviors of the synthesized PAN copolymers were investigated in relation to their molecular weight, solid content and melting temperature. The influence of "historical effects" on the spinning solution of PAN was studied by analyzing the laws of viscosity considering the diversification time and temperature. The viscosity disciplines of each spinning solution conformed well to the rheological universal laws in a comparison of the suspension polymerization product with that of precipitation polymerization. Viscosity changes in the swelling process of dissolution were gentler in the suspension polymerization product; a small amount of water will quickly debase the solution viscosity, and high-speed mixing can greatly shorten the time required by the spinning solution to reach the final viscosity.

Scutellaria baicalensis Georgi Extracts inhibit RANKL-induced Osteoclast Differentiation

  • Shim, Ki-Shuk;Kim, Soon-Nam;Kim, Myung-Hee;Kim, Young-Sup;Ryu, Shi-Yong;Min, Yong-Ki;Kim, Seong-Hwan
    • Natural Product Sciences
    • /
    • v.14 no.3
    • /
    • pp.182-186
    • /
    • 2008
  • Scutellaria baicalensis Georgi (SBG) is traditionally used medicinal herb that has anti-oxidant, anticancer and anti-inflammatory effects. In this study, we investigated whether the extracts of SBG have the inhibitory activity in the osteoclast differentiation by using mouse monocytes RAW264.7 cells and primary mouse bone marrow-derived macrophages (BMMs). Methanol extract (ME) from SBG was successively fractionated into methylene chloride (MF), ethylacetate (EF) and n-butanol fraction (BF). The activity assay for tartrateresistant acid phosphatase (TRAP) and Western blot analysis were employed to evaluate the osteoclasts differentiation and the activation of mitogen-activated protein (MAP) kinases, respectively. ME, MF, EF and BF significantly and dose-dependently inhibited osteoclast differentiation without the decrease of cell viability at the concentrations used in this study. In addition, ME significantly inhibited the activation of c-jun-N-terminal kinase (JNK). In conclusion, this study firstly demonstrated that ME of SBG has the potential to inhibit the osteoclast differentiation through the suppression of JNK activation partially.

A Deep Investigation of the Thermal Decomposition Process of Supported Silver Catalysts

  • Jiang, Jun;Xu, Tianhao;Li, Yaping;Lei, Xiaodong;Zhang, Hui;Evans, D.G.;Sun, Xiaoming;Duan, Xue
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1832-1836
    • /
    • 2014
  • A deep understanding of the metallic silver catalysts formation process on oxide support and the formation mechanism is of great scientific and practical meaning for exploring better catalyst preparing procedures. Herein the thermal decomposition process of supported silver catalyst with silver oxalate as the silver precursor in the presence of ethylenediamine and ethanolamine is carefully investigated by employing a variety of characterization techniques including thermal analysis, in situ diffuse reflectance infrared Fourier transform spectroscopy, scanning electron microscopy, and X-ray diffraction. The formation mechanism of supported silver particles was revealed. Results showed that formation of metallic silver begins at about $100^{\circ}C$ and activation process is essentially complete below $145^{\circ}C$. Formation of silver was accompanied by decomposition of oxalate group and removal of organic amines. Catalytic performance tests using the epoxidation of ethylene as a probe reaction showed that rapid activation (for 5 minutes) at a relatively low temperature ($170^{\circ}C$) afforded materials with optimum catalytic performance, since higher activation temperatures and/or longer activation times resulted in sintering of the silver particles.