• Title/Summary/Keyword: Chemical enhanced backwash

Search Result 5, Processing Time 0.019 seconds

Empirical modelling of chemically enhanced backwash during ultrafiltration process

  • Daramola, M.O.;Adeogun, A.G.
    • Membrane and Water Treatment
    • /
    • v.2 no.4
    • /
    • pp.225-237
    • /
    • 2011
  • In this study, response of reversibility of membrane flux during chemically enhanced backwash (CEB) to changes in filtration time, filtration flux and coagulant concentration dosing during ultrafiltration (UF) process was investigated using a regression model. The model was developed via empirical modelling approach using response surface methodology. In developing the model, statistically designed UF experiments were conducted and the results compared with the model output. The results showed that the performance of CEB, evaluated in terms of the reversibility of the membrane flux, depends strongly on the changes in coagulant concentration dosage and the filtration flux. Also the response of the reversibility of membrane flux during CEB is independent of the filtration time. The variance ratio, VR << $F_{value}$ and $R^2$ = 0.98 obtained from the cross-validation experiments indicate perfect agreement of the model output with experimental results and also testify to the validity and suitability of the model to predict reversibility of the membrane flux during CEB in UF operation.

Study of MF membrane as pretreatment option using various backwash process from wastewater reuse pilot plant (전처리 MF의 다양한 역세 공정을 적용한 하수재이용 파일럿 플랜트 연구)

  • Park, Kwang-Duck;Park, Chansoo;Lee, Chang-Kyu;Kim, Jong-Oh;Choi, June-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.335-341
    • /
    • 2016
  • Various studies have forwarded an outstanding wastewater effluent treatment systems toward securing sustainable supply of water sources. In this paper, a broad overview of the performance of MF membrane as pretreatment option for wastewater reuse will be presented based on the literature survey and experiments conducted over the wastewater reuse pilot plant. The pilot plant was operated with a continuous data acquisition for about 300days under various chemical enhanced backwash (CEB) system with subsequent treated water quality analysis. Accordingly, assessment of the effluent revealed that the pretreated water is suitable enough to be used as an input for Reverse Osmosis (RO) unit and significant effect of CEB and concentration of NaOCl is also conceived from the analysis. Moreover, it's also observed that the application of various CEB condition over long operational hours induced a constant declination of overall performance of MF membrane.

Permeability recovery and changes in fouling layer characteristics of PTFE membrane by enhanced backwash cleaning using NaOCl during coagulation and microfiltration (응집 및 정밀여과공정의 강화역세정시 NaOCl에 따른 PTFE막 투과능 회복과 막오염층 변화)

  • Kang, Sun Gu;Park, Keun Youg;Kwark, Dong-Geun;Kim, Yun-Jung;Kweon, Jihyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.2
    • /
    • pp.233-241
    • /
    • 2015
  • Polytetrafluoroethylene (PTFE) membrane has high resistance to chlorine, which is a great advantages in chemical cleaning to recover water flux during membrane processes in drinking water systems. A humic kaolin water with approximately 4 mg/L of DOC and 10 NTU of turbidity was prepared as a feed water. Coagulation pretreatment with or without settling was applied. The coagulation with settling showed the greatest water production. The reduced flux was effectively recovered by NaOCl cleaning, i.e., 21% recovery by 50 mg/L of NaOCl cleaning and 49% recovery by 500 mg/L NaOCl cleaning. The images of SEM and AFM analyses were corresponded to the water flux variation. However, when the floc was accumulated on the membrane surfaces, the efficiency of NaOCl cleaning was substantially limited. In addition, dynamic contact angle became greater after cleaning, which indicates changes in characteristics of fouling layer such as surface hydrophobicity. Proper cleaning technologies during enhanced backwash using NaOCl would expand application of PTFE membranes in drinking water systems.

Optimum Operating Condition for Micro-Filtration Process as a Seawater Desalination Pretreatment (해수담수화 전처리로서 가압식 MF 공정의 최적 운전조건 도출)

  • Kim, Youngmin;Jang, Jung-Woo;Kim, Jin-Ho;Choi, June-Seok;Lee, Sangho;Kim, Sukwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.624-629
    • /
    • 2013
  • The relation between performance maintenance conditions and those cost efficiency was studied to choose an optimum operating condition in the seawater desalination pretreatment system. A hollow fiber microfiltration module, which was developed with domestic technology, was tested with the various operating conditions such as chemically enhanced backwash cycles and design dosages of a cleaning chemical. Transmembrane pressure was measured to investigate membrane fouling status and cleaning degree. In addition, economic analysis was performed to compare water production costs by the operation condition. As a result, The operation mode III, chemically enhanced backwash at once a day with 100 mg/L of sodium hypochlorite (NaOCl) was selected. The concurrent evaluation between membrane filtration performance and its economic analysis will be suitable to choose an efficient optimum condition.

Application of Ceramic MF Membrane at the Slow Sand Filtration Process (완속모래여과 공정에서 세라믹 MF 막의 적용)

  • Choi, Kwang-Hun;Park, Jong-Yul;Kim, Su-Han;Kim, Jeong-Sook;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.877-882
    • /
    • 2013
  • The application of ultrafiltration (UF) and microfiltration (MF) membranes has been increased for drinking water purification. The advantages of UF/MF membrane process compared to conventional treatment processes are stable operation under varying feed water quality, smaller construction area, and automatic operation. Most membrane treatment plants are designed with polymeric membranes. Recently, some studies suggested that the process of treating surface water with ceramic membranes is competitive to the application of polymeric membranes. Higher water flux, less frequent cleaning, and much longer lifetime are the advantages of ceramic membrane comparing to polymeric membrane. Therefore, this research focused on the application of ceramic MF membrane pilot plant at the slow sand filtration plant. The ceramic membrane pilot plant has three trains that used raw water and sand filtered water as a feed water, respectively. For optimizing the pilot plant process, the coagulation with PACl coagulant was used as a pretreatment of ceramic membrane process. In addition, CEB (Chemical Enhanced Backwash) process using $H_2SO_4$ and NaOCl was used for 1.5 days, respectively. The experimental results showed that applying the optimum coagulant dose before membrane filtration showed enhancing membrane fluxes for both raw water and sand filtered water. Also, when using raw water as a feed of membrane, minimum fouling rate was 2.173 kPa/cycle with 25 mg/L of PACl and when using sand filtered water, the minimum fouling rate was 0.301 kPa/cycle with 5 mg/L of PACl.