• 제목/요약/키워드: Chemical density

검색결과 3,715건 처리시간 0.028초

Density Functional Analysis of the Spin Exchange Interactions in VOSb2O4

  • Koo, Hyun-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2338-2340
    • /
    • 2012
  • The spin exchange parameters of $VOSb_2O_4$ were evaluated by performing energy-mapping analysis based on density functional calculations. The spin exchange interaction between the nearest-neighbor $V^{4+}$ ions is strongly antiferromagnetic while other interactions are negligible. Thus, the magnetic structure of $VOSb_2O_4$ is best described by a spin-1/2 Heisenberg antiferromagnetic chain with no spin frustration.

Triplet Exciton Annihilation Process on Two Dimensional Lattice of Naphthalene Choleic Acid Creystals

  • 송추윤;박치헌;장현화;남규천;최용국;국성근
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권11호
    • /
    • pp.1000-1004
    • /
    • 1996
  • A random walk simulation was used to determine the triplet exciton density and annihilation rate for a two dimensional lattice of naphthalene choleic acid with small amount of β-methylnaphthalene (BMN). The results demonstrate that energy transfer efficiency (α) increases as density increases and the annihilation begins to become significant at triplet exciton densities higher then 10-3/sites. Another simulation was carried out to determine annihilation rate and unimolecular decay rate in the absence of BMN. The results indicate that the annihilation rate is equal to the unimolecular decay rate at the density of 1.2×10-3/sites.

How are the Lower Lying Atoms Imaged Brighter than the Higher Lying Once in the STM Experiments?

  • 정동운
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권5호
    • /
    • pp.499-502
    • /
    • 2001
  • Unexpectedly, the brightest row was known to represents the lowest lying Te atoms in the STM image of NbTe2. Projected density of states and crystal orbital overlap population show that the 5pz orbital of the lowest lying Te(2) atom doe s not interact with the 4d orbital of Nb strongly so that the 5pz band remains in the vicinity of the Fermi energy. Consequently the lowest lying Te(2) atoms contribute higher electron density near the Fermi energy which in turn exhibits brightest image in the STM experiments.

대기압 플라즈마 프로세스에 있어서 시간에 따른 화학종의 밀도변화 연구 (Study on the Temporal Density Variation of Chemical Species in the Atmospheric Pressure Plasma Process)

  • 한상보;박성수;김종현;박재윤
    • 조명전기설비학회논문지
    • /
    • 제27권7호
    • /
    • pp.45-51
    • /
    • 2013
  • This study is to discuss simulation results with 51 principal chemical reactions in non-thermal plasma space under atmospheric pressure, and the ambient gas was mainly composed of oxygen and nitrogen molecules. The initial density of O and OH radicals under the ambient temperature of 300K is largely generated in comparison with other higher temperature, and the density of O radical decreased from $20{\mu}s$ according to increase the temperature. The initial density of OH radical seemed to decrease steeply at the initial stage. By increasing the initial density of $H_2O$ molecules, O radical's effect was few and the density of OH radical was largely generated about 2 times. In addition, ozone density was increased as increasing the density of O radical, but it was decreased as increasing the density of $H_2O$. In case of the temperature more than 300K, $NO_2$ tend to be removed, but NO was increased than the initial density.

Theoretical Studies on Nitramine Explosives with -NH2 and -F Groups

  • Zhao, Guo Zheng;Lu, Ming
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1913-1918
    • /
    • 2012
  • The nitramine explosives with $-NH_2$ and -F groups were optimized to obtain their molecular geometries and electronic structures at DFT-B3LYP/6-31+G(d) level. The theoretical molecular density (${\rho}$), heat of formation (HOF), detonation velocity ($D$) and detonation pressure ($P$), estimated using Kamlet-Jacobs equations, showed that the detonation properties of these compounds were excellent. Based on the frequencies scaled by 0.96 and the principle of statistic thermodynamics, the thermodynamic properties were evaluated, which were respectively related with the temperature. The simulation results reveal that 1,3,5,7-tetranitro-1,3,5,7-tetrazocan-2-amine (molecule B1) performs similarly to the famous explosive HMX, and 2-fluoro-1,3,5-trinitro-1,3,5-triazinane (molecule C1) and 2-fluoro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (molecule D1) outperform HMX. According to the quantitative standard of energetics and stability as an HEDC (high energy density compound), molecules C1 and D1 essentially satisfy this requirement. These results provide basic information for molecular design of novel high energetic density compounds.

High Cell Density Culture of Anabaena variabilis with Controlled Light Intensity and Nutrient Supply

  • Yoon, Jong-Hyun;Shin, Jong-Hwan;Ahn, Eun-Kyung;Park, Tai-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.918-925
    • /
    • 2008
  • Controlling the light energy and major nutrients is important for high cell density culture of cyanobacterial cells. The growth phase of Anabaena variabilis can be divided into an exponential growth phase and a deceleration phase. In this study, the cell growth in the deceleration phase showed a linear growth pattern. Both the period of the exponential growth phase and the average cell growth rate in the deceleration phase increased by controlling the light intensity. To control the light intensity, the specific irradiation rate was maintained above $10\;{\mu}mol/s/g$ dry cell by increasing the incident light intensity stepwise. The final cell density increased by controlling the nutrient supply. For the control of the nutrient supply, nitrate, phosphate, and sulfate were intermittently added based on the growth yield, along with the combined control of light intensity and nutrient concentration. Under these control conditions, both final cell concentration and cell productivity increased, to 8.2 g/l and 1.9 g/l/day, respectively.

High density plasma etching of MgO thin films in $Cl_2$/Ar gases

  • Xiao, Y.B.;Kim, E.H.;Kong, S.M.;Chung, C.W.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.213-213
    • /
    • 2010
  • Magnetic random access memory (MRAM), based on magnetic tunnel junction (MTJ) and CMOS, is one of the best semiconductor memories because it can provide nonvolatility, fast access time, unlimited read/write endurance, low operating voltage and high storage density. For the realization of high density MRAM, the etching of MTJ stack with good properties is one of a key process. Recently, there has been great interest in the MTJ stack using MgO as barrier layer for its huge room temperature MR ratio. The use of MgO barrier layer will undoubtedly accelerate the development of MTJ stack for MRAM. In this study, high-density plasma reactive ion etching of MgO films was investigated in an inductively coupled plasma of $Cl_2$/Ar gas mixes. The etch rate, etch selectivity and etch profile of this magnetic film were examined on vary gas concentration. As the $Cl_2$ gas concentration increased, the etch rate of MgO monotonously decreased and etch slop was slanted. The effective of etch parameters including coil rf power, dc-bais voltage, and gas pressure on the etch profile of MgO thin film was explored, At high coil rf power, high dc-bais voltage, low gas pressure, the etching of MgO displayed better etch profiles. Finally, the clean and vertical etch sidewall of MgO films was achieved using $Cl_2$/Ar plasma at the optimized etch conditions.

  • PDF

Synthesis and Non-Isothermal Crystallization Behaviors of Maleic Anhydride onto High Density Polyethylene

  • Ahn, Youngjun;Jeon, Jong Hyuk;Baek, Chul Seoung;Yu, Young Hwan;Thenepalli, Thriveni;Ahn, Ji Whan;Han, Choon
    • 한국세라믹학회지
    • /
    • 제53권1호
    • /
    • pp.24-33
    • /
    • 2016
  • The grafting reaction for maleic anhydride (MA) onto high density polyethylene (HDPE) was investigated from solution process with initiators. The chemical modification of neat HDPE was carried out with various contents of MA (3-21 wt.%) and initiator (0.2-1 wt.%) at different temperature ($80-130^{\circ}C$). The grafting degree was obtained from the titration and the highest grafting degree was 3.1%. The grafting degree increased as the content of MA and initiator increased, however, the highest grafting degree was demonstrated for a particular content of MA and initiator. In the non-isothermal crystallization kinetics, the Ozawa model was unsuitable method to investigate the crystallization behavior of MA onto HDPE, whereas the Avrami and Liu models found effective. The crystallization rate was accelerated as the cooling rate increased, but postponed by combination of MA onto neat HDPE backbone.

Culturing of Rat Intestinal Epithelial Cells-18 on Plasma Polymerized Ethylenediamine Films Deposited by Plasma Enhanced Chemical Vapor Deposition

  • Choi, Chang-Rok;Kim, Kyung-Seop;Kim, Hong-Ja;Park, Heon-Yong;Jung, Dong-Geun;Boo, Jin-Hyo
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권6호
    • /
    • pp.1357-1359
    • /
    • 2009
  • Many researchers studied cell culturing on surfaces with chemical functional groups. Previously, we reported surface properties of plasma polymerized ethylenediamine (PPEDA) films deposited by plasma enhanced chemical vapor deposition with various plasma conditions. Surface properties of PPEDA films can be controlled by plasma power during deposition. In this work, to analyze correlation of cell adherence/proliferation with surface property, we cultured rat intestinal epithelial cells-18 on the PPEDA films deposited with various plasma powers. It was shown that as plasma power was decreased, density of cells cultured on the PPEDA film surface was increased. Our findings indicate that plasma power changed the amine density of the PPEDA film surface, resulting in density change of cells cultured on the PPEDA film surface.