• Title/Summary/Keyword: Chemical database

Search Result 283, Processing Time 0.028 seconds

WebChemDB: An Integrated Chemical Database Retrieval System

  • Hou, Bo-Kyeng;Moon, Eun-Joung;Moon, Sung-Chul;Kim, Hae-Jin
    • Genomics & Informatics
    • /
    • v.7 no.4
    • /
    • pp.212-216
    • /
    • 2009
  • WebChemDB is an integrated chemical database retrieval system that provides access to over 8 million publicly available chemical structures, including related information on their biological activities and direct links to other public chemical resources, such as PubChem, ChEBI, and DrugBank. The data are publicly available over the web, using two-dimensional (2D) and three-dimensional (3D) structure retrieval systems with various filters and molecular descriptors. The web services API also provides researchers with functionalities to programmatically manipulate, search, and analyze the data.

Development of Component Reliability Database for Korean Nuclear Power Plants and Chemical Plants (국내 원자력 발전소 및 화학공장의 기기 신뢰도 데이터베이스 구축)

  • 최선영;한상훈
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2000.11a
    • /
    • pp.269-277
    • /
    • 2000
  • The component reliability database is required in PSA (Probabilistic Safety Analysis) for NPP (Nuclear Power Plant). We have applied a generic database to the PSA for the Korean NPPs, since there is no specific component reliability database. Therefore we are developing the plant-specific component reliability database for domestic NPPs. We also extend the experience and knowledge of PSA and component reliability database for NPP to chemical industry We collect the raw data like component operation history and maintenance history and then input the required data for the component reliability database through failure analysis. With the database, we can not only perform PSA with real data but also perform maintenance optimization.

  • PDF

Improving the Reliability of the National Database for Chemical Hazard Information (국가 화학물질 유해성정보 데이터베이스 구축 과정의 신뢰도 제고 방안에 관한 연구)

  • Lee, Somin;Lee, Minhyeok;Kang, Mijin;Kwon, Soon-Kwang;Ra, Jin-Sung;Park, Beaksoo
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.4
    • /
    • pp.410-422
    • /
    • 2020
  • Objectives: According to the Act on Registration, Evaluation, Etc. of Chemicals, new and existing chemicals must be registered by 2030. In addition, industries need to submit hazard data as an attachment during the registration process. Therefore, we constructed a nationwide chemical database to support small industry by providing hazard data and original sources. During the process, we developed a new standard procedure for minimizing errors and increasing reliability. Methods: We analyzed the categories of errors and the cause of the errors through the verification results of the 2019 project. We present an improved database construction methodology and system. Results: Errors are categorized according to their causative factors into simple, technical, and structural type errors. Simple errors arise simply because of decreased concentration or negligence in following the instructions. Technical errors are caused by a discrepancy between the professional field and the type of data. Structural errors indicate systemic errors such as incomplete forms on the excel database or ambiguity in the guidelines. Lessons from the errors collected in the 2019 project are used to update the procedures for database authorization and technical guidelines. The main update points are as follows; 'supplementation of review process', 'giving regular training to external reviewers', 'giving additional information to authors, like physico-chemical properties of substances, degradability, etc.', 'amendment of excel form', and 'guideline upgrades'. Conclusions: We conducted this study with the aim of improving the accuracy and reliability of the database of hazard information for chemical substances. The new procedures and guidelines are now being used in the 2020 project for construction of a hazard information database for Korea.

A Study on Development of Database for the Characteristics of Hazardous Chemicals (유해화학물질 특성정보 데이터베이스 구축 연구)

  • Han, Jong-Yup;Song, Ki-Sup;Kang, Sung-Hyun
    • Journal of Information Management
    • /
    • v.28 no.2
    • /
    • pp.1-19
    • /
    • 1997
  • A late-comer in the marine affairs, development of ways for efficient access and utilization of information on marine environmental conservation and pollution prevention is important. The properties and removal methods of toxic chemicals have been entered into the database for 1,000 substances. The database of toxic chemicals for pollution and spills has also been fortified for the following terms: general characteristics, health hazard and response, fire hazard and response, chemical reactivity, physico-chemical properties, and other properties. The information and data running in this database are easily accessible via Internet and Korean telecommunications companies; it is also available KRISTAL databases.

  • PDF

Development of Accident Response Program for Hazardous Material(HAZMAT) Transport Vehicles (이동식 탱크차량을 위한 사고대응 프로그램 개발)

  • Lee, Hyun-Jin;Han, Seung-Hoon;Chae, Chung-Keun;Yong, Jong-Won;Tae, Chan-Ho;Ko, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.61-68
    • /
    • 2015
  • This study develop accident response program for the hazardous materials(HAZMAT) transport vehicle with materials database and guidelines for accident response. Guidelines was developed by guideline develop processes of FEMA after identify hazards. Developed material database was applied the GHS. also database was optimized by removing data that can confuse to accident response. Finally, This study verify developed programs through case study.

Constructing a Database Structure for the Domestic LP Gas and Natural Gas Accidents and its Analysis (국내 LP 및 천연가스사고 Database 구축 및 분석에 관한 연구)

  • Ko, Jae-Sun;Park, Sun-Young;Kim, Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.56-63
    • /
    • 2008
  • We have garnered 3,593 data of gas [Natural Gas (NG) and Liquefied Petroleum Gas (LPG)] accidents reported for 16 years from 1991, and then analyzed the accidents according to their types and causes based on the classified database. According to the results the gas leak has been the most common accident followed by the explosion and then fire accidents. The most frequent accident-occurring locations for fire, explosion and leak are recognized around the valve, hose and pipeline, respectively. In addition, we have applied the Poisson analysis to predict the most-likely probabilities of fire, explosion and release in the upcoming 5 years. From this research we have assured the successive database updating will highly improve the anticipating-probability accuracy and thus it will play a key role as a significant safety-securing guideline against the gas disasters.

  • PDF

Equipment Reliability Database for Chemical Plants (화학공장 설비 및 기기에 대한 신뢰도 데이터베이스 구축)

  • Ko Jae-Wook;Kwon Hyuk-Myun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.1 s.30
    • /
    • pp.13-18
    • /
    • 2006
  • Chemical plants should perform Quantitative Risk Assessment that evaluates types of accident, frequency and damage which can happen through using the hazardous equipment and the hazardous materials for preventing and preparing industrial disasters. It is necessary that Chemical plants should include the reliability database which efficiently evaluate the Quantitative Risk Assessment. So in this study, we suggest a which methodology applies Quantitative Risk Assessment on the basis of the constructed data to imply the reliability of industrial facilities and equipment, collection of reliability data, system analysis and development of software.

  • PDF

The Safety Design of Corrosive Chemical Handling Process based on Reliability Database (신뢰도 데이터베이스 기반 부식성 화학물질 취급공정의 안전설계)

  • Chu, Chang Yeop;Baek, Jong Bae
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.141-149
    • /
    • 2018
  • In a PCB factory, there is a corrosive chemical substance supply system that can causes major leakage accidents. These accidents can give rise to shut down the factory and do residents damage that cause enormous loss of properties. To mitigate these risks, it is necessary to provide a chemical disaster prevention system. Moreover, after considering the situation and environment of the production site, it is of great importance to build an optimal chemical accident prevention system by reflecting risk reduction measures from the point of process design and by assessing quantitative risk based on reliability data. However, because there was no established database of the reliability about facilities and equipment that can be used in the domestic, the business site and consulting organization had being used the reliability data such as USA CCPS(Center for Chemical Process Safety). In these days, Korean institutes are studying on reliability data utilization method of quantitative risk assessment for preventing chemical accidents and domestic utilization algorithms and storage bed of reliability data. This study presents samples of reliability database about the chemical substance supply system that constructed from the history data such as failure, maintenance for 10 years at a PCB factory. Also, this work proposes the safety design criteria for supply facilities of corrosive chemical substance by assessing quantitative risk on the basis of the reliability data.

The Development of Quantitative Audit System for Safety Management Systems based on Accident Database (사고 데이터베이스를 활용한 안전 관리 시스템의 정량적 Audit 시스템 개발)

  • Ahn, Sung Joon;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • In the chemical process industries, accidents have a high potential and large effects on catastrophic results. Therefore the safety management for accident prevention plays a crucial role to guarantee the process safety. For these reasons, many systematic methods for safety management system have been widely employed in the fields of chemical processes. PSM (Process safety management) is one of most representative methods. The audit system, which is one of PSM system components, evaluates the performance of PMS system. However, most existing safety audit systems are not systematic and these are performed based on knowledges and experiences of various specialist. Moreover, the safety audit is only performed based on each independent technical component. So, the results of safety audit are not a quantitative index but only a series of commentaries. Finally, it is very difficult to obtain the comparison with other plants or industries. In this study, the novel systematic method and index-based accident database of auditing safety management systems for quantitative assessment are proposed. First, the elements of safety audit replace technical methods to categories of accident database. The F-N curve of each category for accident database is employed to derive the index for quantitative assessment. The Accidental Factor Risk Index (AFRI) is suggested for evaluating the effect of each element in accident database and safety audit system. The safety audit can be modified according to the proposed index.