• Title/Summary/Keyword: Chemical control system

Search Result 1,085, Processing Time 0.032 seconds

Model Predicitve Control of First Order Hyperbolic PDE Systems

  • Park, Jinhoon;Lee, Kwang-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.46.3-46
    • /
    • 2002
  • Most of the process control algorithms in practice are based on the finite dimensional control theory. However, many chemical processes are described by partial differential equations (PDE's) and are infinite dimensional in nature due to spatial variation. Especially when the convection is dominant and thus diffusion can be ignored, chemical processes that are described by a system of first order hyperbolic PDE's. Such processes include tubular reactors, fixed bed reactors and pressure swinging adsorption. Conventionally such infinite dimensional systems described by PDE's are controlled by finite dimensional controllers that are designed through finite dimensional reduction of the process m...

  • PDF

Two Phase Algorithm in Optimal Control

  • Park, Chungsik;Lee, Tai-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.252-255
    • /
    • 1999
  • Feed rate in the fed-batch reactor is the most important control variable in optimizing the reactor performance. Exact solution can be obtained only for limited cases of simple reactor. The complexity of the model equations makes it extremely difficult to solve fur the general class of system models. Evolutionary programming method is proposed to get the information of the profile types, and the final profile is calculated by that information. The modified evolutionary programming method is used to get the more optimal profiles and it is demonstrated that proposed method can solve a wide range of optimal control problems.

  • PDF

Design of Multi-loop PID Controllers Based on the Generalized IMC-PID Method with Mp Criterion

  • Vu Truong Nguyen Luan;Lee Jie-Tae;Lee Moon-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.212-217
    • /
    • 2007
  • A new method of designing multi-loop PID controllers is presented in this paper. By using the generalized IMC-PID method for multi-loop systems, the optimization problem involved in finding the PID parameters is efficiently simplified to find the optimum closed-loop time constant in a reduced search space. A weighted sum Mp criterion is proposed as a performance cost function to cope with both the performance and robustness of a multi-loop control system. Several illustrative examples are included to demonstrate the improved performance of the multi-loop PID controllers obtained by the proposed design method.

Control of Feed Rate Using Neurocontroller Incorporated with Genetic Algorithm in Fed-Batch Cultivation of Scutellaria baicalensis Georgi

  • Choi, Jeong-Woo;Lee, Woochang;Cho, Jin-Man;Kim, Young-Kee;Park, Soo-Yong;Lee, Won-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.687-691
    • /
    • 2002
  • To enhance the production of flavonoids [baicalin, wogonin-7-Ο-glucuronic acid (GA)], which are secondary metabolites of Scutellaria baicalensis Georgi(G.) plant cells, a multilayer perceptron control system was applied to regulate the substrate feeding in a fed-batch cultivation. The optimal profile for the substrate feeding rate in a fed-batch culture of S. baicalensis G. was determined by simulating a kinetic model using a genetic algorithm. Process variable profiles were then prepared for the construction of a multilayer perceptron controller that included massive parallelism, trainability, and fault tolerance. An error back-propagation algorithm was applied to train the multiplayer perceptron. The experimental results showed that neurocontrol incorporated with a genetic algorithm improved the flavonoid production compared with a simple fuzzy logic control system. Furthermore, the specific production yield and flavonoid productivity also increased.

Liquid Level System Realizing Van de Vusse Reactor Dynamics and its Control Experiments (Van de Vusse 반응기 동특성을 구현하는 액위시스템 및 제어 실험)

  • Lee, Jietae
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.184-189
    • /
    • 2020
  • Van de Vusse reactors show the maximum points in input-output steady state maps and dramatic changes in their dynamic characteristics around those maximum points. According to their operating regions, there appear sign changes in steady state gains and nonlinear characteristics such as non-minimum phase dynamics which cause difficulties in applying controllers. Many nonlinear controllers that are available and newly designed are applied to these Van de Vusse reactor processes and their performances are tested. Reactor examples with real reactions have been reported. However, due to difficulties in constructing and operating chemical reactor systems, they are not adequate to be used for real applications of control experiments and hence most of results are based on simulations studies. Here, we propose a liquid level system that realizes most of the steady state and dynamic characteristics of Van de Vusse reactor, and two nonlinear control methods that can be used as base methods to compare nonlinear controllers newly designed. Liquid level experimental system and two nonlinear control methods are very simple and can be used to test performances of nonlinear controllers in practice.

Control Methods for Operation on the Saturation Edge (포화시작점에서의 운전을 위한 제어방법)

  • Ahn, Gwang Noh;Lim, Sanghun;Sung, Su Whan;Lee, Jietae
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.390-395
    • /
    • 2020
  • For some processes with saturations, economical operating points are on the saturation edges. Traditional feedback controllers cannot be used to regulate such processes on the saturation edges because there are abrupt dynamics changes and no feedback information at saturations. Optimization-based methods such as the model predictive control can treat this control problem without difficulty when the saturation levels and dynamics are known and not varying. Otherwise, an adaptation scheme to track the saturation levels and dynamics should be included. Here, for very simple methods to treat this control problem, two control methods based on the recent slope seeking method and the relay feedback method are proposed. Their performances are evaluated with simulations applying them to a second order liquid level system with saturation. Simulations show that these proposed control methods can find and maintain operating point of the saturation edge under 5% relative error.

Task Rescheduling Using a Coordinator in a Structural Decentralized Control of Supervisory Control Systems

  • Lee, Sang-Heon;Kim, Ill-Soo;Kai C. Wong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.2
    • /
    • pp.22-31
    • /
    • 2004
  • A problem of task rescheduling using a coordinator in a structural decentralized control of supervisory control theory is formulated. we consider that the overall system is divided into a number of local systems. Using an example of a chemical batch reaction process, it has shown that after local supervisors have been established for a given task, a coordinator can be used to solve some rescheduling problems among local plants for new or modified tasks. The coordination system models the interactions of local plants, and is consisting of only the shared events of local plants, so simpler to synthesize. A coordinator is designed based on the specifications given for the coordination system. Under the 'structural' conditions developed in this paper, the combined concurrent actions of the coordinator with the existing local supervisors will achieve the rescheduling requirements. Again since the conditions are structural (not specification-dependent), once the coordination architecture has been established, it can be used for a number of different tasks without further verifications.

Droplet Based Microfluidic System (액적 기반의 미세유체 시스템의 현황)

  • Jung, Jae-Hoon;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.545-555
    • /
    • 2010
  • Recently, droplet-based microfluidic systems are widely used in various areas ranging from fundamental science including chemistry, biology, and physics to material science and engineering. This article reviews recent development in the droplet based microfluidic system from basic fabrication of tiny device, principle of droplet formation, merging, mixing, control of droplets, and application for the synthesis of novel functional materials. We discuss strong advantages of the droplet based microfluidics in point of control of particle size, morphologies, shapes, and structures.

A Study on Configuration Method of TMR Control System for Turbine Control (터빈제어용 3중화 디지털 제어시스템의 구성방식에 관한 연구)

  • Jeong, Chang-Ki;Shin, Yoon-Oh
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.731-733
    • /
    • 1999
  • Distributed Control System has been used for large scale and critical system control such as aerospace industries, chemical and power plant and so on. It is very impotant factors for design of the control system to be reliable and fault-tolerant. These control systems have backup or redundant processing modules for minimizing the time of failure and improving reliability. But such methods have changeover duration from faulty module to healthy one. During that interval, feedback control loop raises bumper and performance of the system become worse. TMR(Triple Modular Redundancy) control system is one of the best reliable ones that can overcome such a mortal drawback. This paper analyzes the components of TMR system functionally and proposes practical and cost effective configuration method for turbine control of thermal power plant.

  • PDF

The study on the development of hazard evaluation expert system

  • Lee, Byungwoo;Kang, In-Koo;Suh, Jung-Chul;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.87-90
    • /
    • 1996
  • Inherently safe plants are maintained through the systematic identification of potential hazards, and various hazard evaluation methods have been developed. Recently, much effort is given into the development of automated hazard evaluation system by introducing the expert system. An automated system will help to obtain consistency and to make the result more reliable. HAZOP study is one of the most systematic and logical evaluation procedure. However, it has disadvantages: experts should participate at the same time, the detailed study requires much man-hour, and the results depend on the expertise of the experts. Therefore, the automation of hazard evaluation is necessary to reduce the required time and to get the consistent evaluation results. In this study, HAxSYM, an expert system to automate HAZOP study, is developed. The case studies are performed to validate the effectiveness of the developed system, and the results are compared to the results of traditional method.

  • PDF