• Title/Summary/Keyword: Chemical bonding state

Search Result 138, Processing Time 0.022 seconds

Compositional Study of Surface, Film, and Interface of Photoresist-Free Patternable SnO2 Thin Film on Si Substrate Prepared by Photochemical Metal-Organic Deposition

  • Choi, Yong-June;Kang, Kyung-Mun;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.13-17
    • /
    • 2014
  • The direct-patternable $SnO_2$ thin film was successfully fabricated by photochemical metal-organic deposition. The composition and chemical bonding state of $SnO_2$ thin film were analyzed by using X-ray photoelectron spectroscopy (XPS) from the surface to the interface with Si substrate. XPS depth profiling analysis allowed the determination of the atomic composition in $SnO_2$ film as a function of depth through the evolution of four elements of C 1s, Si 2p, Sn 3d, and O 1s core level peaks. At the top surface, nearly stoichiometric $SnO_2$ composition (O/Sn ratio is 1.92.) was observed due to surface oxidation but deficiency of oxygen was increased to the interface of patterned $SnO_2/Si$ substrate where the O/Sn ratio was about 1.73~1.75 at the films. This O deficient state of the film may act as an n-type semiconductor and allow $SnO_2$ to be applied as a transparent electrode in optoelectronic applications.

Elution Properties of Naringin from Soft Contact Lens Containing Naringin (나린진(naringin)이 함유된 소프트 콘택트렌즈에서 나린진의 용출 특성)

  • Ryu, Geun-Chang;Jun, Jin;Jin, Moon-Seok;Chae, Soo-Chul;Kim, In-Suk
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.3
    • /
    • pp.45-50
    • /
    • 2008
  • Purpose: A soft contact lens was manufactured by adding naringin known as natural anti-bacterial material to resin solution. With solution eluted from manufactured contact lens, we examined its optical properties, physical and chemical states of naringin in the polymer, and elution properties. Methods: The soft contact lens with naringin was synthesized by bulk polymerization method. IR spectrum and HPLC were used to define the bonding type of naringin itself in the soft contact lens contained naringin, elution process of naringin to the saline solution, and the amount of naringin solution eluted from the lens with elapsed time. Results: Naringin was continuously eluted with constant concentration from the soft contact lens for about a month and the structure ofnaringin which is eluted was as same as before it was added to resin solution. Any change in optical properties such as transmittance couldn't be found. Bonding state and the structure of naringin in contact lens were explained with IR spectrum and HPLC results. Conclusions: In the contact lens with naringin, naringin remained in the contact lens bonding with weak hydrogen bonding and/or van der Waals force between naringin and polymer. Naringin was continuously eluted from the contact lens contained naringin during about 1 month. Even after 1 month, it showed that the concentration of the naringin eluted was approximately 10 ppm in a day. From the results, adding naringin to the soft contact lens resin is very effective method for manufacturing the soft contact lens which has anti-bacterial function for a period of time.

  • PDF

Equilibrium Partitioning of Nutrient Components in Functional Solvents (기능성 용매에 대한 영양성분들의 평형분배 특성)

  • Lee, Hyoung Jin;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.346-350
    • /
    • 2009
  • Natural state materials contain a lot of available nutrient components. Among them, natural nutrient substances are utilized not only as the ingredient of functional foods but also as the excipients of functional cosmetics and pharmaceutic. Of these nutrient substances, solubility parameters of each components were calculated to choose the most suitable solvents for solutions. The solubility parameters for each components were composed of the dispersion contribution of the molecular attractive function, the polar contribution of the molecular attractive function and the contribution of the hydrogen bonding force. The chi parameters ($\chi_{12}$) were calculated with the information of the solubility parameter for the solute and solvent and were used as the criteria for the optimal solute-solvent pair. The optimal solvents were suggested with the numerical values of chi parameters for some amino acids.

A Yew Technique for Infrared Spectroscopy using Polyethylene Film Cell (Polyethylene Film을 利用한 赤外線分光分析用 Cell)

  • Sung, Chwa-Kyung;Noh, Ick-Sam
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.1
    • /
    • pp.58-64
    • /
    • 1963
  • Authors propose a new technique using polyethylene film instead of sodium chloride window as a cell material. Nujol mulls, liquids and aqueous solutions are sandwitched between two pieces of polyethylene film which are held between cardboards. Ordinary lead or stainless steel spacers could be used if exact cell thickness is desired. A more elaborate cell can be assembled by injecting samples between two pieces of polyethylene film which are placed between sodium chloride windows of ordinary demountable liquid cell. The absorption bands due to polyethylene and Nujol are compensated by placing the polyethylene film of suitable thickness in the reference beam. The absorption bands due to solvents such as water can also be compensated by the polyethylene film cell sandwitched solvent of suitable thickness in the reference beam. This method would be a simple new technique. Especially this technique may offer a new helpful way for the investigation of the state of substances in aqueous system. Using this technique, authors have observed the appearance of an absorption bands at 3.2 micron, in the spectrum of phenol in aqueous solution, that is absent in the spectrum of phenol in benzene solution. The same absorption band also has been observed in the spectra of aqueous formaldehyde solution and aqueous polyvinyl alcohol solution, where the absorption bands due to polyethylene and water are compensated. Although it may be regarded that this absorption band is related to the intermolecular interaction between water and the solute having OH group, that is hydrogen bonding. The exact assignment of this absorption band is out of this work.

  • PDF

Manganese(II) and Dioxomolybdenum(VI) Complexes with Monobasic Bidentate Schiff Bases : Synthesis, Characterization and Biological Investigation

  • Garg, Rekha;Kumari, Anita;Joshi, S.C.;Fahmi, Nighat
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2381-2386
    • /
    • 2013
  • A new series of Mn(II) and Mo(VI) complexes containing the Schiff bases hydrazinecarbothioamide and hydrazinecarboxamide of 5,6-dimethyl-1H-indol-2,3-dione have been synthesized. The nature of bonding and the stereochemistry of the complexes have been deduced from elemental analyses, molecular weight determinations and spectral studies viz. electronic IR, ESR, $^1H$ NMR and $^{13}C$ NMR and X-ray diffraction spectral studies. The magnetic moment values of the manganese(II) complexes are in the range of 5.80-6.15 B.M. suggesting a high spin state of manganese in these complexes. The spectral data are consistent with a tetrahedral geometry around Mn(II) and an octahedral geometry for Mo(VI), in which the ligands act as bidentate chelating agents, coordinated through the nitrogen and sulfur/oxygen atoms. The ligands and their metal complexes have been tested against a number of pathogenic fungi and bacteria at different concentrations and were found to possess sufficient fungicidal and bactericidal properties. Further, the complexes were also tested for their antifertility activity in male albino rats and the results were indeed positive.

Ce $L_Ⅲ$-edge X-ray Absorption Spectroscopic Studies on the Tetrameric Ce-polyoxyhydroxy Cation Intercalated Aluminosilicate

  • Yun, Ju Byeong;Hwang, Seong Ho;Kim, Dong Guk;Gang, Seong Gu;Choe, Jin Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.3
    • /
    • pp.305-309
    • /
    • 2000
  • The cerium ion intercalated aluminosilicate was prepared by ion exchange reaction between $Na^+$ in montmorillonite and $Ce^{+4}$ in aqueous solution. The X-ray absorption near edge structrure(XANES) analyses indicate that the $Ce^{+4}$ ions are partially reduced to the $Ce^{+3}$ ones during the intercalation into layered aluminosilicate due to a charge transfer between host and intercalant. From the EXAFS analysis, two different (Ce-O) bonding pairs could be characterized with the distances and coordination numbers of 2.31 $({\pm}0.02){\AA}$ ${\times}$ 8.2 $({\pm}1.5)$ and 2.66 $({\pm}0.02){\AA}$ ${\times}$ 2.7 $({\pm}1.0)$, respectively, with the oxygen atoms as the first nearest neighbor, and two (Ce-Ce) pairs at 3.78 ${\AA}$ as the second neighbor. It is therefore concluded that the most probable Ce-species stabilized in the interlayer space of aluminosilicate after the intercalation is the tetrameric Ce-polyoxy/hydorxy cations with the mixed valent state of 0.75 $Ce^{+4}$.0.25 $Ce^{+3}$.

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF

Solvation in Mixed Solvents (Part 6). Solvolysis of Benzyl Nitrates in Binary Aqueous Solvent Mixtures (혼합용매에서의 용매화 (제 6 보). 수용성 이성분 혼합용매계에서 Benzyl nitrates 의 가용매 분해반응)

  • Ikchoon Lee;Se Chul Sohn;Hai Whang Lee;In Chul Kim
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.419-424
    • /
    • 1987
  • Kinetic studies on the solvolysis of para-methyl benzyl nitrate and benzyl nitrate were carried out in aqueous methanol, ethanol, acetonitrile, acetone, tetrahydrofuran and dioxane mixtures at 60$^{\circ}$C. The rates were faster in protic solvent mixtures than in aprotic solvent mixtures. This was considered in the light of transition state stabilization by hydrogen bonding solvation of protic solvent mixtures. Grunwald-Winstein equation, extended Grunwald-Winstein equation and correlation between E$_T$(30) and rate constant were applied in order to discuss the transition state variations caused by changing benzyl substituents and solvents. The results showed that strong electrophilic assistance of solvent is operative in the the water-rich solvents.

  • PDF

Photohysical Properties of New Psoralen Derivatives:Psoralens Linked to Adenine through Polymethylene Chains

  • Yoo, Dong-Jin;Park, Hyung-Du;Kim, Ae-Rhan;Rho, Young S.;Shim, Sang-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.9
    • /
    • pp.1315-1327
    • /
    • 2002
  • The model compounds, 8-methoxypsoralen-CH2O(CH2)n-adenine (MOPCH2OCnAd, n=2, 3, 5, 6, 8, and 10) in which 5 position of 8-methoxypsoralen (8-MOP) is linked by various lengths of polymethylene bridge to N9 of adenine. UV absorption spectra are identical with the sum of MOPCH2OC3 and adenine absorption spectra. Solvent effects on the UV absorption and fluorescence emission spectra indicate that the lowest excited singlet state is the $(\pi${\rightarrow}$\pi*)$ state. The spectral characteristics of the fluorescence of MOPCH2OCnAd are strongly dependent upon the nature of the solvents. The fluorescence emission spectra in aprotic solvents are broad and structureless due to the excimer formation through the folded conformation accelerated by hydrophobic ${\pi}-{\pi}$ stacking interaction. Increasing polarity of the protic solvents leads to higher population of unfolded conformation stabilized through favorable solvation and H-bonding, and consequently to an increase in the fluorescence intensity, fluorescence lifetime, and a shift of fluorescence maximum to longer wavelengths. The decay characteristics of the fluorescence in polar protic solvents shows two exponential decays with the lifetimes of 0.6-0.8 and 1.6-1.9 ns in 5% ethanol/water, while MOPCH2OC3 shows 0.5 and 1.7 ns fluorescence lifetimes. The long-lived component of fluorescence can be attributed to the relaxed species (i.e., the species for which the solvent reorientation (or relaxation) has occurred), while the short-lived components can be associated with the unrelaxed, or only partially relaxed, species.

Heteroleptic Phosphorescent Iridium(III) Compound with Blue Emission for Potential Application to Organic Light-Emitting Diodes

  • Oh, Sihyun;Jung, Narae;Lee, Jongwon;Kim, Jinho;Park, Ki-Min;Kang, Youngjin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3590-3594
    • /
    • 2014
  • Blue phosphorescent $(dfpypy)_2Ir(mppy)$, where dfpypy = 2',6'-difluoro-2,3'-bipyridine and mppy = 5-methyl-2-phenylpyridine, has been synthesized by newly developed effective method and its solid state structure and photoluminescent properties are investigated. The glass-transition and decomposition temperature of the compound appear at $160^{\circ}C$ and $360^{\circ}C$, respectively. In a crystal packing structure, there are two kinds of intermolecular interactions such as hydrogen bonding ($C-H{\cdots}F$) and edge-to-face $C-H{\cdots}{\pi}(py)$ interaction. This compound emits bright blue phosphorescence with ${\lambda}_{max}=472nm$ and quantum efficiencies of 0.23 and 0.32 in fluid and the solid state. The emission band of the compound is red-shifted by 40 nm relative to homoleptic congener, $Ir(dfpypy)_3$. The ancillary ligand in $(dfpypy)_2Ir(mppy)$ has been found to significantly destabilize HOMO energy, compared to $Ir(dfpypy)_3$, $(dfpypy)_2Ir(acac)$ and $(dfpypy)_2Ir(dpm)$, without significantly changing LUMO energy.