• Title/Summary/Keyword: Chemical bonding state

Search Result 138, Processing Time 0.02 seconds

Electronic and Vibrational Spectroscopy of cis-Diisothiocyanato(1,4,8,11-tetraazacyclotetradecane)chromium(Ⅲ) Thiocyanate

  • Choi, Jong-Ha;Park, Yu-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.384-388
    • /
    • 2003
  • The emission and excitation spectra of $cis-[Cr(cyclam)(NCS)_2]NCS$ (cyclam = 1,4,8,11-tetraazacyclotetradecane) taken at 77 K are reported. The infrared and visible spectra at room temperature are also measured. The vibrational intervals due to the electronic ground state are extracted from the far-infrared and emission spectra. The ten pure electronic origins due to spin-allowed and spin-forbidden transitions are assigned by analyzing the absorption and excitation spectra. Using the observed transitions, a ligand field analysis has been performed to determine the bonding properties of the coordinated ligands in the title chromium(Ⅲ) complex. According to the results, it is found that nitrogen atoms of the cyclam ligand have a strong σ-donor character, while the NCS ligand has medium σ- and π-donor properties toward chromium(Ⅲ) ion.

Kinetic Isotope Effects Involving Deuterated Benzylamine Nucleophiles

  • Lee, Ik-Choon;Koh, Han-Joong;Sohn, Dong-Sook;Lee, Byung-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.1
    • /
    • pp.101-103
    • /
    • 1991
  • The kinetic isotope effects (KIE) are determined for the reactions of benzyl benzenesulfonates (BBS), ethyl benzenesulfonates (EBS) and phenacyl benzensulfonates (PAB) with deuterated benzylamine nucleophiles. The inverse secondary ${\alpha}$-deuterium KIE observed were somewhat smaller than those for the corresponding reactions with aniline nucleophiles. The primary $KIE_s$ obtained with PAB were slightly greater than those for the corresponding reactions with anilines, which suggested that the inverse secondary KIE is decreased due to a relatively earlier transition state for bond-making with little change in the hydrogen bonding strength to the carbonyl oxygen.

Spectroscopic Properties and Ligand Field Analysis of Pentaammine(imidazole)chromium(III) Perchlorate

  • 최종하
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.81-84
    • /
    • 1999
  • The emission and excitation spectra of [Cr(NH3)5(imH)](ClO4)3·H2O (imH=imidazole) taken at 77 K are reported. The 298 K visible and far-infrared spectra are also measured. The vibrational intervals of the electronic ground state are extracted from the far-infrared and emission spectra. The ten electronic bands due to spin-allowed and spin-forbidden transitions are assigned. Using the observed transitions, a ligand field analysis has been performed to determine the bonding properties of coordinated imidazole in the title chromium(Ⅲ) complex. It is confirmed that nitrogen atom of the imidazole ligand has a medium it-acceptor property toward chromium(Ⅲ) ion. The zero-phonon line in the excitation spectrum splits into two components by 181 cm-1, and the large 2Eg splitting can be reproduced by the ligand field theory.

Polymer Catalysts by Molecular Imprinting: A Labile Covalent Bonding Approach

  • Kim, Jong Man;An, Gwang Deok;Alexander G. Strikovsky;Guenter Wulff
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.689-692
    • /
    • 2001
  • An imprinting technique with labile covalent interactions has been developed in the design of new polymer catalysts. The template monomer 2 was prepared and copolymerized with DVB or EDMA to provide the polymer with a cavity having the shape of th e transition state of the reaction as well as binding sites for the substrate and catalytic functionalities. The rate of hydrolysis of diphenyl carbonate (1) in the presence of the imprinted polymer IP-DVB-THF was found to be 120 times faster than the background uncatalyzed reaction. A Km of 32 mM and a kcat of 1.8 ${\times}$ 10-3min-1 were observed from Michaelis-Menten kinetics with the imprinted polymer IP-DVB-THF.

Micellar Effects on Intramolecular Charge Transfer Emission from Biphenylcarboxylic Acids

  • Yoon, Min-Joong;Cho, Dae-Won;Kang, Seong-Gwan;Lee, Min-Yung
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.704-708
    • /
    • 1993
  • The intramolecular charge transfer (ICT) phenomena of the photoexcited 2-biphenylcarboxylic acid (2BPCA) and 4-biphenylcarboxylic acid (4BPCA) have been investigated in some surfactant micellar solutions. The ICT emission of 4BPCA and 2BPCA in aqueous solution at sufficiently low pH (1-3) has been observed to be markedly quenched and blue-shifted upon addition of a cationic surfactant, cetyltrimethylammonium chloride (CTAC) in contrast to little change in anionic sodium dodecyl sulfate (SDS) and neutral Brij 35. An anionic emission band has been observed to be enhanced at expense of the ICT emission as a function of the concentration of CTAC. These results with the micellar effects on the fluorescence decay kinetics of 4BPCA suggest that formation of the ICT state of the excited acids is inhibited by CTAC-induced proton transfer as well as the decrease in the polarity and/or hydrogen-bonding ability of the micellar microenvironment entrapping the acids.

Synthesis and Characterization of Bis(N,N-dimethyl-2-aminomethylthiophenium)Tetrahalocuprate(Ⅱ)

  • 정찬규;김영인;최성낙
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.9
    • /
    • pp.845-849
    • /
    • 1996
  • Bis(N,N-dimethyl-2-aminomethylthiophenium)tetrahalocuprate(Ⅱ) salt, (dmamtH)2CuCl4 and (dmamtH)2CuBr4 were prepared and characterized by spectroscopic (IR, UV-Vis, EPR, XPS), electrochemical method, and magnetic susceptibility measurement. The experimental results reveal that the compounds have pseudotetrahedral symmetry around copper(Ⅱ) site due to the steric hinderance of the bulky 2-(dimethylaminomethyl)thiophene in the complex. The N-H…Cl type hydrogen bonding is expected in (dmamtH)2CuCl4 from the XPS and IR data. Magnetic susceptibility data show that both of the compounds follow Curie-Weiss law in the range of 77-300 K with negative Weiss constant exhibiting antiferromagnetic interaction between copper(Ⅱ) ions in solid state.

Photophysical Properties of Khellin-Dimethylfumarate C$_4$-Cyclomonoadduct

  • Shim, Sang-Chul;Kang, Ho-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.458-461
    • /
    • 1986
  • The fluorescence intensity of khellin-dimethylfumarate C$_4$-cycloadduct (KDF) is very sensitive to temperature and to the nature of solvents, especially hydrogen-bonding ability. The fluorescence quantum yields of KDF in ethanol and isopentane at 77K are 0.73 and 0.54, respectively, both of which are much larger than the room temperature values. The phosphorescence lifetime is very long and decreases with decreasing the solvent polarity. The phosphorescence and fluorescence quantum yield ratio is very small and decreases with decreasing solvent polarity. The solvent relaxation plays an important role in the excited states of KDF. The internal conversion is a major decay process of the excited singlet state of KDF in all the solvents used at room temperature.

Kinetics and Mechanism of the Aminolysis of Phenylacetyl Chlorides in Acetonitrile

  • 이해황;이지원;고한중;이익천
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.642-645
    • /
    • 1998
  • The aminolysis reactions of phenylacetyl chlorides with anilines and N,N-dimethylanilines (DMAS) in acetonitrile at -15.0 ℃ are investigated. The magnitude of ρx (= -2.8 ∼ -2.9) and ρy (= 0.9 ∼ 1.3, after correcting for the fall-off), and the negative sign of ρxy (= -0.12) for the reactions with anilines suggest an associative SN2 mechanism. For the reactions with DMAs, the magnitude of these Hammett coefficients increases so that tighter bond making in the transition state (TS) is predicted. A nonlinear Hammett plots obtained for the DMAs with an electron acceptor substituent is interpreted to result from a more advanced degree of leaving group departure to assist closer approach of the bulky DMA in the TS. The normal secondary kinetic isotope effects $(k_H/k_D>1.0)$ involving deuterated anilines suggest partial deprotonation by hydrogen bonding to the departing chloride ion.

Effect of V2O5 Modification in V2O5/TiO2-ZrO2 Catalysts on Their Surface Properties and Catalytic Activities for Acid Catalysis

  • Sohn, Jong-Rack;Lee, Cheul-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2459-2465
    • /
    • 2007
  • V2O5/TiO2-ZrO2 catalyst modified with V2O5 was prepared by adding Ti(OH)4-Zr(OH)4 powder into an aqueous solution of ammonium metavanadate followed by drying and calcining at high temperatures. The characterization of prepared catalysts was performed using XRD, DSC, solid-state 51V NMR, and FTIR. In the case of calcination temperature of 500 oC, for the catalysts containing low loading V2O5 below 25 wt % vanadium oxide was in a highly dispersed state, while for catalysts containing high loading V2O5 equal to or above 25 wt % vanadium oxide was well crystallized due to the V2O5 loading exceeding the formation of monolayer on the surface of TiO2-ZrO2. The strong acid sites were formed through the bonding between dispersed V2O5 and TiO2-ZrO2. The larger the dispersed V2O5 amount, the higher both the acidity and catalytic activities for acid catalysis.

Photoemission Study on the Adsorption of Ethanol on Chemically Modified TiO2(001) Surfaces

  • Kong, Ja-Hyun;Kim, Yu-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2531-2536
    • /
    • 2011
  • Ethanol is a prototype molecule used in probing catalytic reactivity of oxide catalysts such as $TiO_2$. In the present study, we adsorbed ethanol on $TiO_2$(001) at room temperature (RT) and the corresponding bonding state of ethanol was systematically studied by x-ray photoemission spectroscopy (XPS) using synchrotron radiation. Especially, we compared $TiO_2$(001) surfaces prepared in ultra-high vacuum (UHV) with different surface treatments such as $Ar^+$-sputtering and oxidation with molecular $O_2$, respectively. We find that the saturation coverage of ethanol at RT varies depending on the amount of reduced surface defects (e.g., $Ti^{3+}$) which are introduced by $Ar^+$-sputtering. We also find that the oxidized $TiO_2$(001) surface has other type of surface defects (not related to Ti 3d state) which can dissociate ethanol for further reaction above 600 K. Our C 1s core level spectra indicate clearly resolved features for the two chemically distinct carbon atoms from ethanol adsorbed on $TiO_2$(001), showing the adsorption of ethanol proceeds without C-C bond dissociation. No other C 1s feature for a possible oxidized intermediate was observed up to the substrate temperature of 650 K.