• Title/Summary/Keyword: Chemical Vapor

Search Result 3,221, Processing Time 0.029 seconds

Vapor Permeation Characteristics of TiO2 Composite Membranes Prepared on Porous Stainless Steel Support by Sol-Gel Method

  • Lee, Yoon-Gyu;Lee, Dong-Wook;Kim, Sang-Kyoon;Sea, Bong-Kuk;Youn, Min-Young;Lee, Kwan-Young;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.687-693
    • /
    • 2004
  • Composite membranes with a titania layer were prepared by soaking-rolling method with the titania sol of nanoparticles formed in the sol-gel process and investigated regarding the vapor permeation of various organic mixtures. The support modification was conducted by pressing $SiO_2$ xerogel of 500 nm in particle size under 10 MPa on the surface of a porous stainless steel (SUS) substrate and designed the multi-layered structure by coating the intermediate layer of ${\gamma}-Al_2O_3$. Microstructure of titania membrane was affected by heat-treatment and synthesis conditions of precursor sol, and titania formed at calcination temperature of 300$^{\circ}C$ with sol of [$H^+$]/[TIP]=0.3 possessed surface area of 210 $m^2$/g, average pore size of 1.25 nm. The titania composite membrane showed high $H_2/N_2$ selectivity and water/ethanol selectivity as 25-30 and 50-100, respectively. As a result of vapor permeation for water-alcohol and alcohol-alcohol mixture, titania composite membrane showed water-permselective and molecular-sieve permeation behavior. However, water/methanol selectivity of the membrane was very low because of chemical affinity of permeants for the membrane by similar physicochemical properties of water and methanol.

Decontamination of Interior of Field Tent Employed Geobacillus stearothermophilus Spores using a Hydrogen Peroxide Vapor System (과산화수소증기 시스템을 이용한 야전용 천막 내 Geobacillus stearothermophilus 아포 제독)

  • Yoon, Sung Nyo;Kim, Yun Ki;Jeung, Jeung Hoon;Yoo, Hyun Sang;Min, Kyung Yool;Kim, Min Cheol;Kim, Se Kye;Ryu, Sam Gon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.669-674
    • /
    • 2016
  • The purpose of this study is to demonstrate the suitability of hydrogen peroxide($H_2O_2$) vapor system for platform interior decontamination. Geobacillus stearothermophilus biological indicator(BI) strips and a field tent were used as a biological simulant and as a simulated platform, respectively. Decontamination was performed based on injection rates and tent sizes with exposure time 60 minutes. We standardized the conditions for the field tent decontamination : 8.0 g/min for $30m^3$($H_2O_2$ vapor concentration of 150~500 ppm, relative humidity of 50 %) and 12.0 g/min for $60m^3$($H_2O_2$ vapor concentration of 250~400 ppm, relative humidity of 55 %). Thus we suggest the system is one of the possible candidates for decontamination of platform interiors.

Synthesis of Three-Dimensional Graphene Using Porous Nickel Nanostructure (다공성 니켈 나노 구조체를 이용한 3차원 그래핀의 합성)

  • Song, Wooseok;Myung, Sung;Lee, Sun Sook;Lim, Jongsun;An, Ki-Seok
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.151-155
    • /
    • 2016
  • Graphene has been a valuable candidate for use as electrodes for supercapacitors. In order to improve the surface area of graphene, three-dimensional graphene was synthesized on porous Ni nanostructure using thermal chemical vapor deposition and microwave plasma chemical vapor deposition. The structural and chemical characterization of synthesized graphene was performed by scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. It was confirmed that three-dimensional and high-crystalline multilayer graphene onto various substrates was synthesized successfully.

Vapor-liquid Interface of Argon by Using a Test-area Simulation Method

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.167-170
    • /
    • 2012
  • A test-area molecular dynamics simulation method for the vapor-liquid interface of argon through a Lennard-Jones intermolecular potential is presented in this paper as a primary study of interfacial systems. We found that the calculated density profile along the z-direction normal to the interface is not changed with time after equilibration and that the values of surface tension computed from this test-area method are fully consistent with the experimental data. We compared the thermodynamic properties of vapor argon, liquid argon, and argon in the vapor-liquid interface. Comparisons are made with kinetic and potential energies, diffusion coefficient, and viscosity.

Growth and defects of ZnSe crystal (ZnSe 단결정 성장과 결정결함)

  • 이성국;박성수;김준홍;한재용;이상학
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.1
    • /
    • pp.76-80
    • /
    • 1997
  • ZnSe single crystals were grown by seeded chemical vapor transport in $H_2$ atmosphere. The influence of the growth parameters on the crystal defect was investigated. The grown ZnSe single crystal was characterized by chemical etching, X-ray rocking curve and photoluminescenc e measurements.

  • PDF

The Growth Kinetics of Tin Oxide Films from Tetramethyltin

  • 이상운;윤천호
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.9
    • /
    • pp.1031-1034
    • /
    • 1999
  • Tin oxide films have been grown employing the chemical vapor deposition technique under reduced pressure conditions using tetramethyltin as the precursor and oxygen as the oxidant. An activation energy derived for the deposition reaction under representative deposition conditions has a value of 89±3 kJ mol-1, suggesting a typical kinetic control. Deposition rates of tin oxide films exhibit a near first order dependence on tetramethyltin partial pressure and a zeroth order dependence on oxygen partial pressure. This study provides the first quantitative information about the growth kinetics of tin oxide films from tetramethyltin by the cold-wall low-pressure chemical vapor deposition.

Prediction of Vapor Pressure of Parahydrogen from the Triple to the Critical Point (삼중점과 임계점간 파라수소의 증기압 예측)

  • Chung, Jaygwan G.
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.4
    • /
    • pp.293-297
    • /
    • 2001
  • The existing vapor pressure measurements reported in the literature for parahydrogen between the triple point and the critical point have been employed to establish the constants and exponent of the following equation in the form of reduced vapor pressure and reduced temperature: ln $lnP_r=2.64-{\frac{2.75}{T_r}}+1.48129lnT_r+0.11T^5_r$Only the normal boiling point ($T_b$= 20.268K), the critical pressure ($P_c$= 1292.81 kPa), and the critical temperature ($T_c$= 32.976K) are necessary to calculate the vapor pressure for an overall average deviation of 0.21% for 153 experimental vapor pressure data.

  • PDF

Thermal Decomposition of Tetrakis(ethylmethylamido) Titanium for Chemical Vapor Deposition of Titanium Nitride

  • Kim, Seong-Jae;Kim, Bo-Hye;Woo, Hee-Gweon;Kim, Su-Kyung;Kim, Do-Heyoung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.219-223
    • /
    • 2006
  • The thermal decomposition of tetrakis(ethylmethylamido) titanium (TEMAT) has been investigated in Ar and $H_2$ gas atmospheres at gas temperatures of 100-400 ${^{\circ}C}$ by using Fourier Transform infrared spectroscopy (FTIR) as a fundamental study for the chemical vapor deposition (CVD) of titanium nitride (TiN) thin film. The activation energy for the decomposition of TEMAT was estimated to be 10.92 kcal/mol and the reaction order was determined to be the first order. The decomposition behavior of TEMAT was affected by ambient gases. TEMAT was decomposed into the intermediate forms of imine (C=N) compounds in Ar and $H_2$ atmosphere, but additional nitrile (RC$\equiv$N) compound was observed only in $H_2$ atmosphere. The decomposition rate of TEMAT under $H_2$ atmosphere was slower than that in Ar atmosphere, which resulted in the extension of the regime of the surface reaction control in the CVD TiN process.

Effect of chemical vapor depositon capacity on the physical characteristics of carbon-coated SiOx (화학기상증착 코팅로의 용량에 따른 탄소 코팅 SiOx의 물리적 특성 변화 분석)

  • Maeng, Seokju;Kwak, Woojin;Park, Heonsoo;Kim, Yong-Tae;Choi, Jinsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.441-447
    • /
    • 2022
  • Silicon-based materials are one of the most promising anode active materials in lithium-ion battery. A carbon layer decorated on the surface of silicon particles efficiently suppresses the large volume expansion of silicon and improves electrical conductivity. Carbon coating through chemical vapor deposition (CVD) is one of the most effective strategies to synthesize carbon- coated silicon materials suitable for mass production. Herein, we synthesized carbon coated SiOx via pilot scale CVD reactor (P-SiOx@C) and carbon coated SiOx via industrial scale CVD reactor (I-SiOx@C) to identify physical characteristic changes according to the CVD capacity. Reduced size silicon domains and local non-uniform carbon coating layer were detected in I-SiOx@C due to non-uniform temperature distribution in the industrial scale CVD reactor with large capacity, resulting in increased surface area due to severe electrolyte consumption.

Hg(0) Removal Using Se(0)-doped Montmorillonite from Selenite(IV)

  • Lee, Joo-Youp;Kim, Yong Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3767-3770
    • /
    • 2013
  • Potassium methylselenite ($KSeO_2(OCH_3)$) was reduced to elemental selenium, Se(0), and then doped onto montmorillonite K 10 (MK10) clay to examine the interaction between elemental mercury (Hg(0)) vapor and Se(0) in an effort to understand the possible heterogeneous reaction of Hg(0) vapor and Se(0) solid. The clay was used as a cost-effective support material for uniform dispersion of Se(0). The Se(0)-doped MK10 showed an excellent reaction performance with Hg(0) under an inert nitrogen gas at 70 and $140^{\circ}C$ in our lab-scale fixed-bed system. However, the precursor, $KSeO_2(OCH_3)$-doped MK10 showed a negligible reaction performance with Hg(0), suggesting that the oxidation state of selenium plays a key role in the reaction of Hg(0) vapor and selenium compounds.