• Title/Summary/Keyword: Chemical Substance Control Act

Search Result 27, Processing Time 0.023 seconds

Determination Method of the Criteria and the Hazard Category for Upper and Lower Tier Qualifying Quantities of the Toxic Substance (유독물질 상위 및 하위규정수량의 기준 및 위험 범주 선정 방안)

  • Hyodong, Kim;Kyoshik, Park
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.9-17
    • /
    • 2022
  • Qualifying quantities (upper tier (UT) and lower tier (LT)) are designated for the regulation of toxic substances. In this study, we aimed to establish systematic criteria for the qualifying quantities by comparing the South of Korea chemical control act with the European Seveso III Directive (Seveso III). In Seveso III, qualifying quantities are defined as "hazard categories" applying GHS (Globally Harmonized System of Classification and Labelling of Chemicals), and LTR (lower-tier requirements) and UTR (upper-tier requirements) are determined. The Pro HC (proposed hazard categories) were relevant to the GHS classification of toxic substances and were compared with the currently regulated qualifying quantities. Furthermore, we estimated the Pro LTR (proposed lower-tier requirements) and Pro UTR (proposed upper-tier requirements) corresponding to each Pro HC. Consequently, it was supposed that LT and UT were selected based on GHS like those of Seveso III. Therefore, designation criteria for qualifying quantities should be established by setting the Pro HC such as in Seveso III, rather than designating the qualifying quantities of toxic substances by itself individually. In addition, qualifying quantities should not be delegated to GHS classifications (H302, H341, H411) that do not meet the criteria for the designation of toxic substances, and the corresponding substances should be excluded from classification as toxic substances. This study provides insights into the selection of hazard categories and criteria for qualifying quantities of toxic substances.

A Study on the Improvement of the System to Reduce Damage on Ammonia Chemical Accident (암모니아 화학사고 피해를 줄이기 위한 제도개선 연구)

  • Lee, Joo Chan;Jeon, Byeong Han;Kim, Hyun Sub
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.2
    • /
    • pp.306-313
    • /
    • 2022
  • Purpose: The purpose of this study is suggested to improve upon current existing methods of ammonia chemical accident prevention and damage reduction. Method: Ammonia is one of the most common toxic substances that causes frequent chemical accidents. And it was selected as leakage materials according to statistics on chemical accident. Based on actual cases of chemical accidents, CARIS modeling was used to compare the damage impact range of Ammonia and HCl and Cl. Also, find out problems with the current systems. Result: As a result of find out the range of accident influence that spreads to the surroundings when an ammonia chemical accident, it was longer than the range of influence of hydrochloric acid and shorter than that of chlorine. In addition, it was found that when chemical accident by ammonia, hydrochloric acid, or chlorine, there are apartments and schools, which can have an effect. Conclusion: It is decided that it is necessary to determine whether or not chemical accident prevention management plans and statistical investigations are submitted for workplaces dealing with ammonia, and detailed guidelines and reviews are necessary. In addition, it is judged that it is necessary to establish a DB for ammonia handling plants, and it is considered that information sharing and joint inspection among related organizations should be pursued.

Evaluation on Soil Washing of Metal-contaminated Soil using Non-Inorganic Acids (비 무기산 세척제에 의한 중금속 오염 토양 세척효과 평가)

  • Lee, Ga-Bin;Jeong, Won-Gune;Lee, Su-Min;Park, Jin;Jo, Yong-Hwan;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.5
    • /
    • pp.10-17
    • /
    • 2022
  • Inorganic acids such as HCl, HNO3, and H2SO4 have been commonly applied to soil washing of heavy metals-contaminated soil due to their cost-effectiveness. However, implementing the 'Chemical Substance Control Act' requires off-site risk assessment of the chemicals used in the soil washing. Therefore, in this study, organic acids or Fe(III)-based washing agents were evaluated to replace commonly used inorganic acids. Ferric removed heavy metals via H+ generated by hydrolysis, which is similar to the HCl used in the control group. Oxalic acid and citric acid were effective to remove Cu, Zn, and Cd from soil. Organic acids could not remove Pb because they could form Pb-organic acid complexes with low solubility. Furthermore, Pb could be adsorbed onto the iron-organic acid complex on the soil surface. Ferric could remove exchangeable-carbonate, Fe-Mn hydroxide, and organic matter and sulfides bound heavy metals (F1, F2, and F3). Organic acids could remove the exchangeable-carbonate and Fe-Mn hydroxide bound metals (F1&F2). Therefore, this research shows that the fractionation of heavy metals in the soil and the properties of washing agents should be considered in the selection of agents in the process design.

A Study on the Hazardousness and the TLV in Working Environments of Benzine (벤진의 유해 위험성과 작업환경 노출기준 연구)

  • Kim, Hyeon-Yeong;Lee, Sung-Bae;Han, Jung-Hee;Shin, Jea-Hoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.3
    • /
    • pp.233-244
    • /
    • 2006
  • Of many volatile organic detergents for metals, benzine(CAS No. 8030-30-6), of which the toxicity has not yet been proven, has been used as an alternative of the halide compounds in the consideration of toxic effects, global warming and the destruction of ozone layer. In order to evaluate the effects of the benzine on human body by investigating the subchronic inhalation toxicity, to obtain the basic data for establishing the criteria of exposure in working environments and to classify the hazardousness in compliance with the Industrial Safety and Health Act by evaluating the hazardousness, repeated inhalation exposure test was carried with SD rats. The rats were grouped by 10 females and males each. The repetitive inhalation exposures were carried out at 4 levels of concentration of 0 ppm, 60 ppm, 300 ppm, and 1,500 ppm, for 6 hours a day, 5 days a week, for 13 weeks. The results are described hereunder. 1. No death of the animals of the exposed and controlled groups in the test period. Not any specific clinical symptoms, change in feed intake quantity, abnormality in eye test, or change in activity were observed. 2. In the 300 ppm and 1,500 ppm groups, weight reduction in the female groups and weight increase of liver and kidney in the male groups compared with control group were observed with statistical significance(p<0.05). 3. In the blood test, the HCT increased in the male 300 ppm group and the number of hematocyte increased, MCV and MCH decreased in the male 1,500 ppm group. In the female 1,500 ppm group, the HB decreased and the distribution width of the hematocyte particle size increased. In the blood biochemistry test, the TP in the male 1,500 ppm group and the LDH in the female 1,500 ppm group were increased with statistical significance(p<0.05). 4. Under the test conditions of the present study with SD rats, the NOEL was evaluated to be from 60 ppm to 300 ppm for both male and female groups. By extrapolation, the NOEL for human who work 8 hours a day was evaluated to be from 128 ppm to 640 ppm 5. Since the NOEL evaluated in this study do not exceed 60ppm(0.184 mg/L) the test material does not belong to the classification of the hazardous substance "NOEL${\leq}$0.5mg/L/6hr/90day(rat), for continuous inhalation of 6hours a day for 90 days" nor to the basic hazardous chemical substance class 1(0.2 mg/L/6hr/90day(rat) defined by the GHS which is a criteria of classification and identification of chemical compounds. However, considering the boiling point($30-204^{\circ}C$), flashing point($-40^{\circ}C$), vapor pressure(40 mmHg), and the inflammable range(1.0 - 6.0 %), sufficient care should be taken for handling in the safety aspects including fire or explosion.

A Study on the Simulation of Damage Distance for Toxic Substances Leakage (사고대비물질 누출 시 독성피해 영향범위 상관관계식 개발에 관한 연구)

  • Jo, Ga-Young;Lee, Ik-Mo;Hwang, Yong-Woo;Moon, Jin-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.599-607
    • /
    • 2017
  • Since 2015, small and medium domestic enterprises that treat more than a certain quantity of chemical substances in accordance with the Chemical Substance Control Act are obliged to submit an off-site impact assessment and risk management plan. In order to reduce the administrative and economic burden of the risk assessment, its impact was determined. Toxic leaks of nitric acid, methanol, and acetic acid were estimated and the correlations (between them?) were calculated. In addition, the correlations of this study were used to compare the KORA results according to the accident scenarios of the actual workplace and the extent of the damage as a function of distance in the case of toxic leaks. In this study, the correlation formula of the materials can be used to quickly determine the damage distance in the event of the accidental leakage of materials in the road or workplace, and to prepare emergency plans and respond to emergencies more quickly.

Synergic Anti-Pruritic and Anti-Inflammatory Effects of Scutellariae Radix plus Flos Loncerae Extracts in Rat Peritoneal Mast Cell and Chemical Antigen-Induced Mice (렛트 복강 비만세포와 화학항원 유도 알레르기 마우스에서 황금과 금은화 추출물의 항가려움 및 항염증 상승효과)

  • Mok, Ji Ye;Jeon, In Hwa;Kim, Hyeon Soo;Shin, Jun Ho;Park, Yong Gyoun;Jang, Seon Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.83-91
    • /
    • 2013
  • Pruritus is a unpleasant symptom in the skin that provokes the act of or desire to scratch. Mast cells are important effector cells in allergic reactions such as pruritus and inflammation. The purpose of this study was undertaken to investigate the synergic anti-pruritic and anti-inflammatory effects of Scutellariae Radix (SB) plus Flos Loncerae (FL) extracts in rat peritoneal mast cells (RPMCs), pruritogen-induced scratching mice and 2,4-dinitrofluorobenzene (DNFB)-induced allergic mice. We investigated the effect of SB, FL and SB plus FL extracts on the production of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-$1{\beta}$, and histamine in RPMCs, on the scratching behavior in ICR mice, and skin clinical serverity and inflammatory mediators in DNFB-induced allergic hairless mice. RPMCs stimulated with PMA plus A23187 or compound 48/80 significantly increased TNF-${\alpha}$, IL-$1{\beta}$ or histamine production compared with media control. However, TNF-${\alpha}$ IL-$1{\beta}$ or histamine levels increased by PMA plus A23187 or compound 48/80 treatment were significantly inhibited by SB, FL in a dose-dependent manner. Especially, SB plus FL pretreatment had a synergic inhibitory effects on stimulator-induced cytokines (TNF-${\alpha}$ and IL-$1{\beta}$) and histamine production. Moreover, SB plus FL administration had a synergic inhibitory effects on the scratching behavior induced by pruritogen (compound 48/80, histamine, serotonin, substance P) in ICR mice. Furthermore, SB plus FL administration had a synergic inhibitory effects on skin damage, inflammatory mediators, leukocyte and mast cell infiltration induced by DNFB in hairless mice. These results suggest that SB plus FL administration has a potential use as a medicinal plant for treatment against itching and inflammation-related skin disease.

A Study on the Flammability and Combustion Risk of Biodiesel Mixture (바이오디젤 혼합물의 인화 및 연소 위험성에 관한 연구)

  • Kim, Ju Suk;Ko, Jae Sun
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.10-24
    • /
    • 2021
  • Purpose: The purpose of this study is to determine the dangers of biodiesel and general diesel mixtures currently used as alternative fuels by equipment (tag method and penski Marten method) and to determine the difference between flash point and combustion point (closed, open) according to test methods. It is intended to be used as a reference material for identification and evaluation of firecausing substances by confirming the risk of mixtures by comparative analysis and measurement, and establishing a risk assessment method for chemical substances. Method: Flash point test method and result treatment were tested based on ASTM and KS M mode, which are tag sealing and pen schematense test methods used as flash point and combustion point test methods for crude oil and petroleum products. The manufacturer of the equipment used in this experiment was a test equipment that satisfies the test standards of KS M 2010 with equipment produced by TANAKA of Japan. The flash point and combustion point were measured, and the flash point according to the test method of biodiesel and general diesel mixture ( Closed, open), and the ignition point of a mixture of biodiesel and general diesel was compared and analyzed for ignition risk compared with conventional diesel. Results: Looking at the experimental results, first, as an analysis of the risk of flammability of the mixture, the flash point of a substance containing 70% biodiesel was found to be about 92℃ based on general diesel with a flash point of 64.5℃, and gasoline and biodiesel or When the biodiesel mixture was synthesized, it was confirmed that the flash point tends to decrease. In addition, the difference between the flash point and the combustion point was analyzed as about 20 ~ 30℃, and when a small amount of gasoline or methanol was mixed, the flash point was lowered, but it was confirmed that the combustion point was similar to that of the existing mixture. Conclusion: In this study, in order to secure the effectiveness of the details of the criteria for judging dangerous materials in the existing Dangerous Materials Safety Management Act, and to secure the reliability and reproducibility of the judgment of dangerous materials, we confirm the criteria for judging the risk of the mixture through an experimental study on flammable mixtures. It will be able to provide reference data for experimental criteria for flammable liquids that are regulated in the field. In addition, if this study accumulates know-how on experiment by test method, it is expected that it can be used as a basis for research on risk assessment and research on dangerous goods.