• Title/Summary/Keyword: Chemical Sensor

Search Result 1,035, Processing Time 0.025 seconds

Synthesis of a New Hexadendates Schiff's Base and Its Application in the Fabrication of a Highly Selective Mercury(II) Sensor

  • Ganjali, M.R.;Norouzi, P.;Alizadeh, T.;Salavati-Niasari, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.68-72
    • /
    • 2007
  • A new PVC membrane potentiometric sensor that is highly selective to Hg2+ ions was prepared, using bis(2-hydroxybenzophenone) butane-2,3-dihydrazone (HBBD) as an excellent hexadendates neutral carrier. The sensor works satisfactorily in the concentration range of 1.0 × 10-6 to 1.0 × 10-1 mol L-1 (detection limit 4 × 10-7 mol L-1) with a Nernstian slope of 29.7 mV per decade. This electrode showed a fast response time (~8 s) and was used for at least 12 weeks without any divergence. The sensor exhibits good Hg2+ selectivity for a broad range of common alkali, alkaline earth, transition and heavy metal ions (lithium, sodium, potassium, magnesium, calcium, copper, nickel, cobalt, zinc, cadmium, lead and lanthanum). The electrode response is pH independent in the range of 1.5-4.0. Furthermore, the developed sensor was successfully used as an indicator electrode in the potentiometric titration of mercury ions with potassium iodide and the direct determination of mercury in some binary and ternary mixtures.

Comparative Study of Holmium (III) Selective Sensors Based on Thiacalixarene and Calixarene Derivatives as an Ionophore

  • Singh, Sanjay;Rani, Geeta
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2229-2237
    • /
    • 2012
  • The two chelates based on calix[4]arene and thiacalix[4]arene have been synthesized and used as neutral ionophores for preparing PVC based membrane sensor selective to $Ho^{3+}$ ion. The addition of potassium tetrakis(4-chlorophenyl)borate (KTpClPB) and various plasticizers, viz., NDPE, o-NPOE, DOP, TEP and DOS have been found to improve significantly the performance of the sensors. The best performance was obtained with the sensor no. 6 having membrane of $L_2$ with composition (w/w) ionophore (2%): KTpClPB (4%): PVC (37%): NDPE (57%). This sensor exhibits Nernatian response with slope $21.10{\pm}0.3mV/decade$ of activity in the concentration range $3.0{\times}10^{-8}-1.0{\times}10^{-2}M\;Ho^{3+}\;ion$, with a detection limit of $1.0{\times}10^{-8}M$. The proposed sensor performs satisfactorily over a wide pH range of 2.8-10, with a fast response time (5 s). The sensor was also found to work successfully in partially non-aqueous media up to 25% (v/v) content of methanol, ethanol and acetonitrile, and can be used for a period of 4 months without any significant drift in potential. The electrode was also used for the determination of $Ho^{3+}$ ions in synthetic mixtures of different ions and the determination of the arsenate ion in different water samples.

Cytidine Biosensor Using Bacteria and Organelle (Bacteria 및 Organelle을 이용한 Cytidine Biosensor)

  • Ihn, Gwon Shik;Kim Jeong-Suk;Jeon Young Guk;Kim Bong Weon
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.38-45
    • /
    • 1991
  • The cytidine bio-sensors have been constructed by immobilizing the bacterium Proteus mirabilis and organelle on an ammonia gas sensor. The bacterial sensor was investigated for the effects of pH, temperature, buffer solution, bacterial amounts, interferences and lifetime. The bacterial sensor had linearity in the range of 5.0 ${\times}$ 10$^{-4}$M ∼ 1.0 ${times}$ 10$^{-2}$M cytidine with a slope of 56 mV/decade at pH 7.8, 30$^{\circ}C$ and 3 mg in 1.0 M phosphate buffer solution. This bacterial sensor was compared with it's organelle sensor.

  • PDF

A Non-contact Two-Dimensional Position Sensing Device Using Electromagnetic Induction (전자기 유도 방식을 이용한 비접촉식 2차원 위치 센서)

  • Ryu, Young-Kee;Koh, Kuk-Won;Kim, Hak-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1159-1163
    • /
    • 2012
  • In this paper, we would like to introduce two dimensional non-contact position sensor by using an electromagnetic induction based coil system and an algorithm to estimate the position of pointer. The sensor which will introduce in this paper is composed of a pointer including LC resonant circuit and a sensor board to detect the electromagnetic signal from the pointer. Because of the simplicity shape of the line antenna, low cost and free form curved shape of the sensor device is possible. In this research, we proposed a new two dimensional non-contact type electromagnetic sensor system and realized the proposed sensor device. From the experiments, the proposed device can be employed for the two dimensional position sensor.

A Neural Network-Based Tracking Method for the Estimation of Hazardous Gas Release Rate Using Sensor Network Data (센서네트워크 데이터를 이용하여 독성물질 누출속도를 예측하기 위한 신경망 기반의 역추적방법 연구)

  • So, Won;Shin, Dong-Il;Lee, Chang-Jun;Han, Chong-Hun;Yoon, En-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.38-41
    • /
    • 2008
  • In this research, we propose a new method for tracking the release rate using the concentration data obtained from the sensor. We used a sensor network that has already been set surrounding the area where hazardous gas releases can occur. From the real-time sensor data, we detected and analyzed releases of harmful materials and their concentrations. Based on the results, the release rate is estimated using the neural network. This model consists of 14 input variables (sensor data, material properties, process information, meteorological conditions) and one output (release rate). The dispersion model then performs the simulation of the expected dispersion consequence by combining the sensor data, GIS data and the diagnostic result of the source term. The result of this study will improve the safety-concerns of residents living next to storage facilities containing hazardous materials by providing the enhanced emergency response plan and monitoring system for toxic gas releases.

  • PDF

An Enzyme-linked Immunosorbent Assay Strip Sensor for the Detection of Legionella Pneumophila (Legionella Pneumophila 검출을 위한 효소면역측정 스트립 센서)

  • Kim, Young-Kee;Park, Sojung
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.544-547
    • /
    • 2014
  • In this study, an enzyme-linked immunosorbent assay (ELISA) and immuno-chromatographic technique were combined to fabricate immuno-strip sensors for the detection of Legionella pneumophila. The immuno-strip sensor was manufactured with four different membranes. A nitrocellulose membrane was used to immobilize capture antibody and generate signals due to the high affinity to antibodies, and glass fiber membranes were used as a conjugate release pad and a sample application pad. A cellulose membrane was used as an absorption pad to induce sample flow by the capillarity. Colorimetric signals produced by sandwich immuno-reaction and enzyme reaction could be analyzed qualitatively and quantitatively within 30 min. Under the given experimental conditions, sensor signals with L. pneumophila samples were observed qualitatively by naked eyes and measured quantitatively in a range of $1.3{\times}10^3-1.3{\times}10^6CFU/mL$ with a digital camera and home-made image analysis software.

Flexible Microfluidic Metamaterial Absorber for Remote Chemical Sensor Application (원격 화학 센서로 활용 가능한 플렉서블 미세유체 메타물질 흡수체)

  • Kim, Hyung Ki;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.123-130
    • /
    • 2016
  • In this paper, a novel flexible microfluidic metamaterial absorber is proposed for remote chemical sensor applications. The proposed metamaterial absorber consists of a periodic of split-ring-cross resonators(SRCRs) and a microfluidic channel. The SRCR patterns are inkjet-printed using silver nanoparticle inks on paper. The microfluidic channels are laser-etched on polydimethylsiloxane(PDMS) material. The proposed absorber can detect change of the effective permittivity at different liquids. Therefore, the absorber can be used for a remote chemical sensor by detecting change of the resonant frequencies. The performance of the proposed absorber is demonstrated with full-wave simulation and measurement results. The experimental results shows that the resonant frequency is 10.49 GHz at the empty channel. When ethanol and DI-water are injected into the channel, the resonant frequencies are 10.04 GHz and 8.9 GHz, respectively.