• Title/Summary/Keyword: Chemical Reactor

Search Result 1,549, Processing Time 0.034 seconds

Synthesis of TiO2-xNx Using Thermal Plasma and Comparison of Photocatalytic Characteristics (열플라즈마에 의한 TiO2-xNx의 합성 및 광촉매 특성 비교)

  • Kim, Min-Hee;Park, Dong-Wha
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.270-276
    • /
    • 2008
  • $N_2$ doped $TiO_2$ nano-sized powder was prepared using a DC arc plasma jet and investigated with XRD, BET, SEM, TEM, and photo-catalytic decomposition. Recently the research interest about the nano-sized $TiO_2$ powder has been increased to improve its photo-catalytic activity for the removal of environmental pollutants. Nitrogen gas, reacting gas, and titanium tetrachloride ($TiCl_4$) were used as the raw materials and injected into the plasma reactor to synthesize the $N_2$ doped $TiO_2$ power. The particle size and XRD peaks of the synthesized powder were analyzed as a function of the flow rate of the nitrogen gas. Also, the characteristics of the photo-catalytic decomposition using the prepared powder were studied. For comparing the photo-catalytic decomposition performance of $TiO_2$ powder with that of $TiO_2$ coating, $TiO_2$ thin films were prepared by the spin coating and the pulsed laser deposition. For the results of the acetaldehyde decomposition, the photo-catalytic activity of $TiO_{2-x}N_x$ powder was higher than that of the pure $TiO_2$ powder in the visible light region. For the methylene blue decomposition, the decomposition efficiency of $TiO_2$ powder was also higher than that of $TiO_2$ film.

Effects of Cu and K Addition on Catalytic Activity for Fe-based Fischer-Tropsch Reaction (Fe계 Fischer-Tropsch 반응에서 촉매활성에 대한 Cu와 K의 첨가 효과)

  • Lee, Chan Yong;Kim, Eui Yong
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Effects of the Cu and K addition and the reduction condition of Fe-based catalysts for Fischer-Tropsch reaction are studied in a continuous flow reactor in this research. The catalysts for the reaction were prepared by homogeneous precipitation followed by incipient wetness impregnation. Physicochemical properties of the $Al_2O_3$ supported Fe-based catalysts are characterized by various methods including X-ray diffraction (XRD), temperature programmed reduction (TPR), and scanning electron microscopy (SEM). Catalytic activities and stabilities of the Fe/Cu/K catalyst are investigated in time-on-stream for an extended reaction time over 216 h. It is found that a reduction of the catalysts using a mixture of CO and $H_2$ can promote their catalytic activities, attributed to the iron carbides formed on the catalysts surface by X-ray diffraction analysis. The addition of Cu induces a fast stabilization of the reaction reducing the time to reach at the steady state by enhancement of catalytic reduction. The addition of K to the catalysts increases the CO conversion, while the physical stability of catalyst decreases with potassium loading up to 5%. The Fe/Cu (5%)/K (1%) catalyst shows an enhanced long term stability for the Fischer-Tropsch reaction under the practical reaction condition, displaying about 15% decrease in the CO conversion after 120 h of the operation.

The Attrition and Calcination Characteristics of Domestic Limestones for In-Situ Desulfurization in Circulating Fluidized Bed Boilers (순환유동층 로내 탈황을 위한 국내 석회석의 마모 및 소성 특성)

  • Kim, Ye Bin;Kang, Seo Yeong;Seo, Su Been;Keel, Sang In;Yun, Jin Han;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.687-694
    • /
    • 2019
  • In order to investigate the behavior of limestones which have been usually used for in-situ desulfurization reaction in circulating fluidized bed combustors, the attrition characteristics and calcination reactions of domestic limestones were analyzed in this study by using a thermogravimetric analyzer and an ASTM D5757-95 attrition tester. The average size distribution of limestones in circulating fluidized bed boilers have to be changed due to the attrition of particle-particle and particle-reactor wall and the calcination reaction. Domestic limestones might be used in commercial circulating fluidized bed boilers, but the attrition behaviors and particle size changes of limestones were varied. In calcination experiments at $850^{\circ}C$, the calcination reaction were varied with limestone samples. The calcination reaction time increased with an increase of particle size. Also, fine particles generated the attrition test of calcined limestone was 20% higher than those generated the attrition test of original limestone.

Effect of Eu in Partial Oxidation of Methane to Hydrogen over Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Eu, Pr, and Tb) Catalysts (Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Eu, Pr, Tb) 촉매상에서 수소제조를 위한 메탄의 부분 산화 반응에서 Eu의 효과)

  • Seo, Ho Joon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.478-482
    • /
    • 2021
  • The catalytic yields of partial oxidation of methane (POM) to hydrogen over Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Eu, Pr, and Tb) were investigated in a fixed bed flow reactor under atmosphere. As 1 wt% of Eu was added to Ni(5)/SBA-15 catalyst, the O1s and Si2p core electron levels of Eu(1)-Ni(5)/SBA-15 showed the chemical shift by XPS. XPS analysis also demonstrated that the atomic ratio of O1s, Ni2p3/2, and Si2p increased to 1.284, 1.298, and 1.058, respectively, and exhibited O-, and O2- oxygen and metal ions such as Eu3+, Ni0, Ni2+, and Si4+ on the catalyst surface. The yield of hydrogen on the Eu(1)-Ni(5)/SBA-15 was 57.2%, which was better than that of Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Pr, and Tb), the catalytic activity was kept steady even 25 h. As 1 wt% of Eu was added to Ni(5)/SBA-15, the oxygen vacancies caused by strong metal-support interaction (SMSI) effect due to the strong interaction between metals and carrier are made. They are resulted in increasing the dispersion of Ni0, and Ni2+ nano particles on the surface of catalyst, and are kept catalytic activity.

Recent Progress in the Catalytic Decomposition of Methane in a Fluidized Bed for Hydrogen and Carbon Material Production (수소 및 탄소소재 생산을 위한 메탄 유동층 촉매분해 기술의 최근 동향)

  • Keon Bae;Kang Seok Go;Woohyun Kim;Doyeon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.175-188
    • /
    • 2023
  • Global interest in hydrogen energy is increasing as an eco-friendly future energy that can replace fossil fuels. Accordingly, a next-generation hydrogen production technology using microorganisms, nuclear power, etc. is being developed, while a lot of time and effort are still required to overcome the cost of hydrogen production based on fossil fuels. As a way to minimize greenhouse gas emissions in the hydrocarbon-based hydrogen production process, methane direct decomposition technology has recently attracted attention. In order to improve the economic feasibility of the process, the simultaneous production of value-added carbon materials with hydrogen can be one of the most essential aspects. For that purpose, various studies on catalysis related to the quality and yield of high-value carbon materials such as carbon nanotubes (CNTs). In terms of process technology, a number of the research and development of fluidized-bed reactors capable of continuous production and improved gas-solid contact efficiency has been attempted. Recently, methane direct decomposition technology using a fluidized bed has been developed to the extent that it can produce 270 kg/day of hydrogen and 1000 kg/day of carbon. Plus, with the development of catalyst regeneration, separation and recirculation technologies, the process efficiency can be further improved. This review paper investigates the recent development of catalysts and fluidized bed reactor for methane direct pyrolysis to identify the key challenges and opportunities.

Effect of Intermittent Plasma Discharge on the Hydrocarbon Selective Catalytic Reduction of Nitrogen Oxides (간헐적 플라즈마 방전이 질소산화물의 탄화수소 선택적 촉매환원에 미치는 영향)

  • Kyeong-Hwan Yoon;Y. S. Mok
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.507-514
    • /
    • 2023
  • The selective catalytic reduction (SCR) of nitrogen oxides (NOx) was investigated in a catalyst (Ag/γ-Al2O3) packed dielectric barrier discharge plasma reactor. The intermittent generation of plasma in the catalyst bed partially oxidized the hydrocarbon reductant for NOx removal to several aldehydes. Compared to using the catalyst alone, higher NOx conversion was observed with the intermittent generation of plasma due to the formation of highly reductive aldehydes. Under the same operating conditions (temperature: 250 ℃; C/N: 8), the NOx reduction efficiencies were 47.5%, 92%, and 96% for n-heptane, propionaldehyde, and butyraldehyde, respectively, demonstrating the high NOx reduction capability of aldehydes. To determine the optimal condition for intermittent plasma generation, the high voltage on/off cycle was adjusted from 0.5 to 3 min. The NOx reduction performance was compared between continuous and intermittent plasma generation on the same energy density basis. The highest NOx reduction efficiency was achieved at 2-min high voltage on/off intervals. The reason that the intermittent plasma discharge exhibited higher NOx reduction efficiency even at the same energy density, compared to the continuous plasma generation case, is that the intermediate products, such as aldehydes generated from hydrocarbon, were more efficiently utilized for the reduction of nitrogen oxides.

Synthesis of Polymeric Surfactants Using CSTR and Their Emulsion PSA Properties (연속 교반 반응기를 이용한 고분자 유화제 합성 및 에멀션 점착 물성)

  • Seung-Min Lim;Myung-Cheon Lee
    • Journal of Adhesion and Interface
    • /
    • v.24 no.3
    • /
    • pp.77-85
    • /
    • 2023
  • In this research, polymeric anionic surfactants having various molecular weights and acid values were synthesized using a continuous stirred tank reactor (CSTR). The CSTR has an advantage of higher production rate and more constant product properties compared to batch and semi-batch reactors. The polymeric surfactants were made using butyl acrylate as a hydrophobic group and acrylic acid as a hydrophilic group. The synthesized polymeric surfactants were ionized with alkali solution and were used as an anionic surfactant. To investigate the properties as a surfactant, the properties of the synthesized surfactant, such as acid value, critical micelle concentration (CMC) and molecular weight, were measured. The results showed that the acid values of the polymeric surfactants were 60 to 380 and a number average molecular weight were 8,000 to 13,000 g/mol. Also, it was found that the CMC was around 0.01 g/ml, which showed similar level values with ordinary surfactant. To prove the performance of the polymeric surfactant, acrylic emulsion PSAs were synthesized using the acquired polymeric surfactant. The results showed that the maximum peel strength of 21.24 N/25mm when acid value was 150 and molecular weight was 8,500 g/mol. The values of peel strength and initial tack of acrylic emulsion PSAs using polymeric surfactant synthesized in this study showed much higher than those of reference PSAs synthesized using ordinary anionic surfactant, SDS (Sodium Dodecyl Sulfate) and SDS/TRX (Triton X-100).

Reactivities of $Li_2ZrO_3/$honeycomb for $H_2S$ Removal ($H_2S$ 제거를 위한 $Li_2ZrO_3$/honeycomb의 반응 특성)

  • Park, Joo-Won;Kang, Dong-Hwan;Lee, Bong-Han;Yoo, Kyung-Seun;Lee, Jae-Gu;Kim, Jae-Ho;Han, Choon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1347-1352
    • /
    • 2005
  • [ $H_2S$ ] removal reaction using $Li_2ZrO_3/honeycomb$ has been carried out in a fixed bed reactor for the cleaning of syngas from the waste gasifier. $Li_2ZrO_3$ was synthesised using reagent-grade $Li_3CO_3$ and $ZrO_2$ with suitable amount of ethanol in a 1:1 ratio. And then $Li_2ZrO_3$ were calcined in air at $850{\sim}1000^{\circ}C$ for 14 h. The optimum condition of $H_2S$ removal reaction is around 20 wt% $Li_2ZrO_3$/honeycomb at 300 mL/min and $700^{\circ}C$. At this condition, removal amount of $H_2S$ was about 0.337 $g^{H_2S}/g^{sorbent}$. Addition of $K_2CO_3$, $Na_2CO_3$, NaCl and LiCl in the $Li_2ZrO_3$ remarkably improves the $H_2S$ removal capacity of modified $Li_2ZrO_3$/honeycomb up to 23%. Analyses of $Li_2ZrO_3/honeycomb$ sorbent by SEM and XRD showed that $Li_2ZrO_3$ was uniformly impregnated into honeycomb up to considerable amounts. Furthermore, the physicochemical properties of the sorbent did not vary much up to $1000^{\circ}C$.

Characteristics of Pd Catalysts for Methane Oxidation (메탄 산화를 위한 Pd 촉매의 특성)

  • Lee, Jin-Man;Yang, O-Bong;Kim, Chun-Yeong;Woo, Seong-Ihl
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.557-562
    • /
    • 1999
  • The reaction properties of Pd. Pd-Ce and Pd-La catalysts supported on ${\gamma}-Al_2O_3$ were investigated in the oxidation reaction of methane($CH_4$) exhausted from the compressed natural gas vehicle in a U-tube flow reactor with gas hourly space velocity of $72,000h^{-1}$. The catalysts were characterized by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), BET surface area and hydrogen chemisorption. Pd catalyst prepared by $Pd(NO_3)_2$ as a palladium precursor and calcined at $600^{\circ}C$ showed the highest activity for a methane oxidation. Catalytic activity of calcined $Pd/{\gamma}-Al_2O_3$ in which most of palladium was converted into palladium oxide species was higher than that of reduced $Pd/{\gamma}-Al_2O_3$ in which most of palladium existed in palladium metal by XRD. As increasing the number of reaction cycles in the wide range of redox, the catalytic activity of $Pd/{\gamma}-Al_2O_3$ was decreased and the highly active window became narrower. Lanthanum oxide promoted Pd catalyst, $Pd/La/{\gamma}-Al_2O_3$ showed enhanced thermal stability compared with $Pd/{\gamma}-Al_2O_3$ even after aging at $1000^{\circ}C$, which was ascribed to the role of La as a promoter to suppress the sintering of palladium metal and ${\gamma}-Al_2O_3$ support. Almost all of methane was removed by the reaction with NO at the redox ratio of 1.2 in case of oxygen excluded steam, but that activity was significantly decreased in the steam containing oxygen.

  • PDF

Characteristics of NO Oxidation Using NaClO2 (NaClO2를 이용한 NO 산화 특성)

  • Lee, Kiman;Byun, Youngchul;Koh, Dong Jun;Shin, Dong Nam;Kim, Kyoung Tae;Ko, Kyoung Bo;Cho, Moohyun;Namkung, Won;Mok, Young Sun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.988-993
    • /
    • 2008
  • The characteristics of NO oxidation using sodium chlorite ($NaClO_2$) powder have been investigated by a flow type packed-bed reactor, where the reaction temperature and the space velocity are varied in the range of $20{\sim}230^{\circ}C$ and $0.4-2.2{\times}10^5hr^{-1}$, respectively, and the simulation gas mixtures are composed of NO (0~200 ppm), $NO_2$ (0-200 ppm), $O_2$ (0~15%) and $H_2O$ (0~15%) within $N_2$ balance. It has been found that the oxidation efficiency of NO depends greatly on the reaction temperature, exhibiting the existence of critical reaction temperature at about $170^{\circ}C$ where the oxidation efficiency of NO is maximized and then abruptly decreased with further increase of reaction temperature, resulting in being negligible over $190^{\circ}C$. Such a behavior in the oxidation efficiency has been originated from the phase transition of $NaClO_2$ at about $170^{\circ}C$ to form $NaClO_3$, and NaCl which are chemically inactive toward the oxidation of NO. The chemical reaction of NO with $NaClO_2$ has been observed to produce $NO_2$, ClNO and $ClNO_2$, whereas that of $NO_2$ only OClO species. Additionally, we have also observed that the introduction of $O_2$ and $H_2O$ has little influence on the oxidation of NO.