• Title/Summary/Keyword: Chemical Propulsion

Search Result 211, Processing Time 0.021 seconds

Internal Flow Dynamics and Performance of Valveless Airbreathing Pulse Detonation Engine (무-밸브 공기흡입 펄스데토네이션 엔진의 내부 유동과 성능)

  • Ma Fuhua;Choi J.Y.;Yang Vigor
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.367-370
    • /
    • 2006
  • This paper deals with the modeling and simulation of the internal flowfield in a valveless airbreathing pulse detonation engine (PDE) currently under experimental development at the U.S. Naval Postgraduate School. The system involves no valves in the airflow path, and the isolation between the inlet and combustor is achieved through the gasdynamics in an isolator. The analysis accommodates the full conservation equations in axisymmetric coordinates, and takes into account variable properties for ethylene/oxygen/air system. Chemical reaction schemes with a single progress variable are implemented to minimize the computational burden. Detailed flow evolution during a full cycle is explored and propulsive performance is calculated. Effect of initiator mass injection rate is examined and results indicate that the mass injection rate should be carefully selected to avoid the formation of recirculation zones in the initial cold flowfield. Flow evolution results demonstrate a successful detonation transmission from the initiator to the combustor. However, strong pressure disturbance may propagate upstream to the inlet nozzle, suggesting the current configuration could be further refined to provide more efficient isolation between the inlet and combustor.

  • PDF

Predicting Micro-Thickness of Phase Fronts in Propellants (추진제의 마이크로 스케일 상면 두께 예측)

  • Yoh Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.13-21
    • /
    • 2005
  • I consider the structure of steady wave system which is admitted by the continuum equations for materials that undergo phase transformations with exothermic chemical reaction. In particular, the dynamic phase front structures between liquid and gas phases, and solid and liquid phases are computationally investigated. Based on the one-dimensional continuum shock structure analysis, the present approach can estimate the nano-width of waves that are present in combustion. For illustration purpose, n-heptane is used in the evaporation and condensation analysis and HMX is used in the melting and freezing analysis of energetic materials of interest. On-going effort includes extension of this idea to include broad range of liquid and solid fuels, such as rocket propellants.

  • PDF

Numerical simulation of deflagration to detonation transition in bent tube (굽은 관에서의 연소폭발천이 현상 모델링)

  • Gwak, Min-Cheol;Kim, Ki-Hong;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.263-267
    • /
    • 2011
  • This paper presents a numerical investigation of the deflagration to detonation transition (DDT) of flame acceleration by a shock wave filled with an ethylene-air mixture in bent tube. A model consisting of the reactive compressible Navier-Stokes equations and the ghost fluid method (GFM) for complex boundary treatment is used. A various intensities of incident shock wave simulations show the generation of hot spots by shock-flame interaction and the accelerated flame propagation due to geometrical effect. Also the first detonation occurs nearly constant chemical heat release rate, 20 MJ/($g{\cdot}s$). Through our simulation's results, we concentrate the complex confinement effects in generating strong shock wave, shock-flame interaction, hot spot and DDT in pipe.

  • PDF

Modeling of Non-Equilibrium Kinetics in Gas Generator including Soot Formation (Soot 생성을 고려한 가스발생기의 Kerosene/LOx의 비평형 화학반응 모델링)

  • Yu, Jung-Min;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.150-153
    • /
    • 2006
  • Gas generator should be adopted either fuel rich or oxidizer rich combustion because of the temperature restriction to avoid any possible thermal damages to turbine blade. This study focuses to model the non-equilibrium chemical reaction of kerosene/LOx with detailed kinetics developed by Dagaut using Perfectly stirred reactor(PSR) assumption. To predict more reliable species fraction and other gas properties, Frenklach's soot model was added to Dagaut's detailed kinetics.

  • PDF

Research of a Methodology for a Liquid Rocket Engine Development (액체로켓엔진 개발을 위한 위기관리 방법론 연구)

  • Moon, In-Sang;Jeong, Yong-Hyun;Kim, Cheul-Woong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.211-215
    • /
    • 2006
  • It is a known fact that much effort, time and cost are needed to develop a new launch vehicle. Among the many components consisting of the launch vehicle, a rocket engine is a one of the most important and difficult part to develop in which many risks may lie dormant because very active chemical reaction occurs inside the engine while the engine is also required optimum ratio of the mass and performance. This research focused on the risk mitigation to develop the rocket engine using the example of recently developed US rocket engine.

  • PDF

Fabrication and Testing of Glass Bipolar Plates for Application on Micro PEM Fuel Cells (마이크로 연료 전지를 위한 유리 바이폴라 플레이트의 제작 방법 및 성능 평가)

  • Jang, Bo-Sun;Lee, Jong-Kwang;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.289-292
    • /
    • 2009
  • The fabrication method of glass bipolar plates for micro PEM fuel cell application has been established and performance evaluation has been carried out. The advantages of glass bipolar plates for micro PEM fuel cells are light weight, high chemical resistivity, and easy manufacture. The MEMS fabrication process of anisotropic wet etching, thermal & UV bonding along with metal layer deposition has been introduced. From performance evaluation, it was shown that the micro fuel cell with a metal layer deposited on the reactive area yielded higher power density than the one without it. But both power densities of the two cases showed out to be adequate with the current status of micro fuel cell technology.

  • PDF

A Study on the Effect of Turbine Nozzle with Fillet on Performance Characteristics of a Gas Turbine Engine (터빈 노즐의 Fillet 설치에 따른 가스터빈 엔진의 성능 특성에 관한 연구)

  • Kim, Jae-Min;Jin, Sang-Wook;Kim, Kui-Soon;Choi, Jeong-Yeol;Kim, Chun-Taek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.542-545
    • /
    • 2009
  • In this study, the effect of turbine geometry on the overall performance of a gas turbine was investigated by computational fluid dynamics. Overall engine performance was predicted through a full engine simulation program which can predict the interactions of the compressor, the combustor and the turbine. The compressor and the turbine analysis code solves 2D and 3D Navier-Stokes equations respectively. The chemical equilibrium code was applied to simulate the combustor. The computations were performed for two different shapes of turbine nozzle. The nozzle shapes adopted a baseline blade and a blade with fillet.

  • PDF

Detonation Wave Propagation Through a T-type Branch Tube in Combustion Wave Rocket Igniter (연소파 로켓 점화기의 T형 분기관내 데토네이션파 전파)

  • ;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.221-224
    • /
    • 2003
  • A numerical study is carried out for the detonation wave propagation through a T-branch. The T-branch is a crucial part of the combustion wave igniter, a novel concept of rocket ignition system aimed for the simultaneous ignition of multiple combustion chambers by delivering detonation waves. Euler equation and induction parameter equation are used as governing equations with a reaction term modeled from the chemical kinetics database obtained from a detailed chemistry mechanism. Second-order accurate implicit time integration and third-order space accurate TVD algorithm were used for solution of the coupled equations. Over two-million grid points enabled the capture of the dynamics of the detonation wave propagation including the degeneration and re-initiation phenomena, and some of the design factors were be obtained for the CWI flame tubes.

  • PDF

Research about Thermoacoustic Resonance Ignition (열음향 공진 점화에 대한 연구)

  • Seo, Seonghyeon;Kang, Sang Hun;Bae, Jong Yeol;Lee, Jin Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.82-89
    • /
    • 2016
  • The unique phenomenon that jet flow kinetic energy is converted to thermal energy through thermoacoustic resonance can be applied for the multiple ignition of liquid rocket engines. The present article includes the basic principle and theory behind the phenomenon as well as major outstanding, previous research works. The thermoacoustic phenomenon is affected by underexpanded jet flow characteristics from a nozzle, geometries of a nozzle and a resonance tube, and chemical composition of jet flow. The paper concludes with discussion what should be considered as crucial issues for the future research on the development of a multiple ignition system of liquid rocket engines.

The Effect of Turbine Blade Pitch on the Gas Turbine Engine Performance (터빈의 피치 간격이 가스터빈 엔진 성능에 미치는 영향)

  • Kim, Jae-Min;Kim, Kui-Soon;Choi, Jeong-Yeol;Jung, Yong-Wun;Hwang, In-Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.6
    • /
    • pp.48-55
    • /
    • 2008
  • We have simulated the performance of a simple engine model with a gas turbine engine simulation program based on CFD. 2-dimensional Navier-Stokes code for the viscous flow was applied to simulate a compressor and a turbine, and the chemical equilibrium code with the lumped method was applied to simulate the combustor. Unsteady-flow phenomenon between rotor and stator of the compressor and the turbine was analyzed by steady mixing-plane method. In this way, the influence of the turbine blade pitch on the engine was investigated. It was shown that the compressor is operated at more higher pressure conditions as narrower the pitch distance of the turbine.