• Title/Summary/Keyword: Chemical Plant

Search Result 4,154, Processing Time 0.036 seconds

Optimum Dosage of Fenton's Reagent for the Dyeing Wastewater by the Different Conditions of Biological Treatment as the Pre-treatment Process (염색폐수의 생물학적 전처리 조건변화에 의한 최적 펜톤시약 투입량 결정에 관한 연구)

  • Bea Joan-Sam;Lee Sang-Ho
    • Journal of Environmental Science International
    • /
    • v.14 no.7
    • /
    • pp.683-689
    • /
    • 2005
  • The consecutive combination process of a biological process as the pre-treatment and a chemical process as the post-treatment is applied for the dyeing wastewater. The poor efficiency of biological treatment using pure oxygen makes the chemical treatment cost high. It is necessary to improve the efficiency of biological treatment in order to reduce the cost of chemical treatment. The purpose of this paper is to find the minimum dose of chemical reagent to fit the Discharged Water Quality Standards for the different biological treatment effluents. Results revealed that the minimum dosage of Fenton's reagent lead to save the cost of chemical treatment based on the guideline dose in the treatment plant. The possible maximum saving reagents was up to $70\%$ for the effluent of the pilot plant packed with the carrier imbedded microorganisms which were selected from the present treatment plant.

Cinnamon Plant Extract as Corrosion Inhibitor for Steel Used in Waste Water Treatment Plants and Its Biological Effect on Escherichia coli

  • Fouda, Abd El-Aziz S.;Nazeer, Ahmed Abdel;El-Khateeb, Ayman Y.;Fakih, Mohamed
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.4
    • /
    • pp.359-365
    • /
    • 2014
  • The inhibition effect of cinnamon plant extract as a green corrosion inhibitor for steel in sulfide polluted salt water was studied by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM). The results showed that cinnamon plant extract in sulfide polluted salt water is a good corrosion inhibitor with inhibition efficiency reached to 80% at 250 ppm of the plant extract. The adsorption of cinnamon obeys Temkin adsorption isotherm, and acts as a mixed-type of inhibitor but dominantly as a cathodic inhibitor in sulfide polluted salt water.

Solubilization of Plant Cell Walls by Extrusion (압출성형에 의한 식물세포벽의 수용화)

  • 황재관;김종태;홍석인;김철진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.2
    • /
    • pp.358-370
    • /
    • 1994
  • Plant cell walls consist of a variety of chemical constituents such as cellulose, humicelluloses, pertins, lignin, glycoproteins, etc. These components are strongly linked through hydrogen , covalent, ionic and hydrophobic bondings, which thus confers the self-protection capability on plants. Some processing by-products (hulls, brans, pomaces) of cereal, fruits and vegetables are very limited in further utilization due to their compact structural rigidity. In view of the fact that the plant cell walls are essentially composed of dietary fiber components , solubilization of the strong intermolecular linkage s can contribute to increasing the soluble dietary fiber content and thus diversifying the functional and physiological role of plant cell walls as dietary fiber sources. This article reviews the chemical constituents of cereals, fruits & vegetables and brown seaweeds with reference to their intermoleuclar linkages. An particular emphasis will be placed on the solubilizing phenomena of rigid plant cell walls by extrusion and the resulting change of functional properties. It is suggested that underutilized food resources, typically exemplified by various food processing by-products and surplus seaweeds, can be successfully modified toward improved functional performance by extrusion.

  • PDF

13-Hydroxy-9Z,11E,15E-octadecatrienoic Acid from the Leaves of Cucurbita moschata

  • Bang, Myun-Ho;Han, Jae-Taek;Kim, Hae-Yeong;Park, Young-Doo;Park, Chang-Ho;Lee, Kang-Ro;Baek, Nam-In
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.438-440
    • /
    • 2002
  • A new unsaturated hydroxy fatty acid was isolated from the leaves of Cucurbita moschata through repeated silica gel column chromatography and chemical methods. The structure of the new fatty acid was determined as 13-hydroxy-9, 11, 15-octadecatrienoic acid on the basis of several spectral data including 2D-NMR. The stererostructures of double bonds were determined to be 9Z, 11 E and 15E by coupling patterns of related proton signals in the $^1H-NMR$ and NOESY experiments.

A 4-week Repeated Oral Dose Toxicity Study of Plant Sterol Esters in Sprague-Dawley Rats

  • Kim, Jong-Choon;Yang, Byung-Chul;Lim, Kwang-Hyeon;Kang, Boo-Hyon;Kim, Choong-Yong;Kim, Kab-Sik;Chung, Dae-Won;Chung, Moon-Koo
    • Toxicological Research
    • /
    • v.18 no.1
    • /
    • pp.31-41
    • /
    • 2002
  • The present study was conducted to investigate the potential subacute toxicity of plant sterol esters by a 4-week repeated oral dose in Sprague-Dawley rats. The test article was administered once daily by gavage to rats at dose levels of 0, 1000, 3000, and 9000 mg/kg/day for 4 weeks. During the test period, clinical sign, mortality, body weights, food and water consumption, ophthalmoscopy, urinalysis, hematology, serum biochemistry, gross finding, organ weight, and histopathology were evaluated. A reduction in the body weight was observed in females of the 9000 mg/kg group on day 27 after the initiation of treatment, but not in males of the group. There were no treatment-related effects on mortality, clinical sign, food and water consumption, ophthalmoscopy, urinarlysis, hematology, serum biochemistry, necropsy findings, organ weights, and histopathology in any treatment group. Based on these results, it was concluded that the 4-week repeated oral dose of plant sterol esters resulted in suppressed body weight in female rats at a dose level of 9000 mg/kg/day. In the condition of this study, target organ was not observed and the no-observed-adverse-effect level (NOAEL) was considered to be 9000 mg/kg/day for males and 5000 mg/kg/day for females.

The effect of nitrogen-fixing microorganisms on plant promotion in cabbage

  • Moon, Je-Hun;Jadamba, Chuluuntsetseg;Yoo, Soo-Cheul
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.190-190
    • /
    • 2017
  • Chemical fertilizers have been used to increase crop production and contributed to escaping food shortages. However, excessive use of chemical fertilizers over a long period caused many problems such as environmental pollution and the hampered production potential of the land. Thus, it is necessary to develop eco-friendly bio-fertilizers that can replace the use of chemical fertilizers. Here, we tested the effect of some nitrogen-fixing microorganims on the plant growth promotion. Seventy free-living nitrogen fixing microorganisms were isolated from rhizosphere of crop cultivation fields, streamside soils and sludge in Ansung, Korea. Of them, three strains (NF2-4-1, Yeast; EMM409, Mesorhizobium; Gsoil662, Burkholderia) were selected to be most efficient in the capacity of N-fixing nitrogen based on colony forming cell assay in N-free media. To investigate the ability to promote plant growth, these strains were inoculated into the soil and cabbage were grown for 4 weeks in the grown chamber. Fresh weight, dry weight, and leaf area were measured from 4-week-old plants. Phenotypic analysis revealed that the growth of the plants inoculated with NF2-4-1 and EMM409 strains were significantly promoted compared to the mock-treated control plants, while Gsoil662-inoculated plants did not show statically significant promotion. These results indicate that these nitrogen-fixing microorganims can be used to develop plant growth promoting bio-fertilizers. Further analysis on nitrogen fixing level in soil by these strains will be tested.

  • PDF