• Title/Summary/Keyword: Chemical Exposure

Search Result 1,297, Processing Time 0.028 seconds

A Study on Improvement Plan for Selecting Boundary Areas to Respond to Chemical Accidents and Terrorism (화학물질 사고·테러 대응을 위한 경계구역 선정 개선방안 연구)

  • Jeon, Byeong-Han;Kim, Hyun-Sub;Lee, Hyun-Seung;Park, Choon-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.60-66
    • /
    • 2020
  • This paper presents a method for improving the selection of boundary areas suitable for Korea's situation based on domestic and foreign case studies on the establishment of boundary areas to protect people and the environment from chemical substances in response to chemical accidents and chemical terrorism. Currently, various related ministries are divided into hot zones, warm zones, and cold zones in common, but in specific areas, they are used in different ways in terms of terminology utilization. Therefore, it was suggested that the boundary areas be divided into four zones: hot zone, warm zone, cold zone, and safety zone. In addition, the terms warm zone and safety zone should be re-established. The existing ERPG acute exposure standard does not take into account various exposure times. Therefore, it is unsuitable for long-term exposure, so the priority of application should be AEGL, ERPG, PAC, and IDLHs. The CARIS information provision method is classified into substances that can or cannot be diffused or classified as indoor leaks. In addition, the wind direction trust line and the ERG's initial separation distance and protective action distance are expressed together so that they can be used for accident responses.

Phthalate Exposure Levels and Related Factors in the Urban Low-Income Group: Focus on a Residential Disadvantaged Community (도시 저소득층의 프탈레이트 노출수준과 관련 요인: 거주 취약집단을 중심으로)

  • Dahee, Han;Jiyun, Kang;Seohui, Han;Su Hyeon, Kim;Hohyun, Jin;Chahun, Kim;Hosub, Im;Ki-Tae, Kim;Yong Min, Cho
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.6
    • /
    • pp.315-323
    • /
    • 2022
  • Background: Socioeconomical disadvantaged communities are more vulnerable to environmental chemical exposure and associated health effects. However, there is limited information on chemical exposure among vulnerable populations in Korea. Objectives: This study investigated chemical exposure among underprivileged populations. We measured urinary metabolites of phthalates in urban disadvantaged communities and investigated their correlations with residential environment factors and relative socioeconomic vulnerability. Methods: Urine samples were collected from 64 residents in a disadvantaged community in Seoul. A total of eight phthalate metabolites were analyzed by liquid chromatography-mass spectroscopy. Analytical method used by the Korean National Environmental Health Survey (KoNEHS) was employed. Covariate variance analysis and general linear regression adjusted with age, sex and smoking were performed. Results: Several phthalate metabolites, namely monomethyl phthalate (MMP), monoethyl phthalate (MEP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and mono-n-butyl phthalate (MnBP) had higher levels than those reported in the adults of 4th KoNEHS. Notably, the MnBP level was higher in the lower socioeconomic group (geometric mean [GM]=47.3 ㎍/g creatinine) compared to non-recipients (GM=31.9 ㎍/g creatinine) and the national reference level (GM=22.0, 28.2 and 32.2 ㎍/g creatinine for adults, 60's and 70's, respectively.). When age, sex and smoking were adjusted, MEP and MnBP were significantly increased the lower socioeconomic group than non-recipients (p=0.014, p=0.023). The lower socioeconomic group's age of flooring were higher than non-recipients, not statistically significant. Conclusions: These results suggest that a relatively low income and aged flooring could be considered as risk factors for increased levels of phthalate metabolites in socioeconomic vulnerable populations.

A Study on the Selection of Candidates for Substances Subject to Permission Using Chemicals Ranking and Scoring (CRS) (화학물질 우선순위 선정기법(CRS)을 활용한 허가대상 후보물질 선정 연구)

  • Kim, Hyo-dong;Park, Kyo-shik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.3
    • /
    • pp.253-267
    • /
    • 2022
  • Objectives: This study was performed to check whether the CRS (Chemical Ranking and Scoring) system is appropriate as a method to determine substances as candidates for substances subject to permission and to apply this system to the selection of candidates for substances subject to permission. Methods: A risk score was obtained by multiplying the hazard score and the exposure score and then ranking them. The hazard sub-indicators are carcinogenicity, germ cell mutagenicity, reproductive toxicity, specific target organ toxicity-repeated exposure, respiratory sensitization and endocrine disrupting chemicals. Exposure sub-indicators are persistence, bioaccumulation and emission volume. Sensitivity analysis was performed for missing values. Correlation analysis and multivariable linear regression analysis were performed among hazard, exposure and risk in order to confirm that CRS was an appropriate method. Results: As a result of the sensitivity analysis on missing values, it was confirmed that the effect on the risk ranking was not sensitive. Correlation and regression analysis confirmed that exposure had a greater effect on risk than hazard. Conclusions: The CRS system, which derives a risk score using a hazard and exposure score, is judged to be appropriate as a method for the selection of preliminary of candidates for substances subject to permission. Benzene, cadmium, nickel, and cobalt were selected as priority candidates for substances subject to permission.

Prediction of Inhalation Exposure to Benzene by Activity Stage Using a Caltox Model at the Daesan Petrochemical Complex in South Korea (CalTOX 모델을 이용한 대산 석유화학단지의 활동단계에 따른 벤젠 흡입 노출평가)

  • Lee, Jinheon;Lee, Minwoo;Park, Changyong;Park, Sanghyun;Song, Youngho;Kim, Ok;Shin, Jihun
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.3
    • /
    • pp.151-158
    • /
    • 2022
  • Background: Chemical emissions in the environment have rapidly increased with the accelerated industrialization taking place in recent decades. Residents of industrial complexes are concerned about the health risks posed by chemical exposure. Objectives: This study was performed to suggest modeling methods that take into account multimedia and multi-pathways in human exposure and risk assessment. Methods: The concentration of benzene emitted at industrial complexes in Daesan, South Korea and the exposure of local residents was estimated using the Caltox model. The amount of human exposure based on inhalation rate was stochastically predicted for various activity stages such as resting, normal walking, and fast walking. Results: The coefficient of determination (R2) for the CalTOX model efficiency was 0.9676 and the root-mean-square error (RMSE) was 0.0035, indicating good agreement between predictions and measurements. However, the efficiency index (EI) appeared to be a negative value at -1094.4997. This can be explained as the atmospheric concentration being calculated only from the emissions from industrial facilities in the study area. In the human exposure assessment, the higher the inhalation rate percentile value, the higher the inhalation rate and lifetime average daily dose (LADD) at each activity step. Conclusions: Prediction using the Caltox model might be appropriate for comparing with actual measurements. The LADD of females was higher ratio with an increase in inhalation rate than those of males. This finding would imply that females may be more susceptible to benzene as their inhalation rate increases.

Review of Public Health Aspects of Exposure to Agent Orange (고엽제 노출에 따른 건강위해의 보건학적 고찰)

  • Yang, Won-Ho;Hong, Ga-Yeon;Kim, Geun-Bae
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.3
    • /
    • pp.175-183
    • /
    • 2012
  • Objectives: Controversy regarding the relationship between exposure to Agent Orange and disease has progressed for more than four decades, both at home and abroad. Recently, the allegation by US veteran Steve House of the burial of Agent Orange at the US Army base Camp Carroll located in Waegwan-eup, Korea, has emerged. We reviewed published articles and reports related to Agent Orange. Methods: Articles and reports were collected online using the keywords 'agent orange' and 'health' and then reviewed. Results: A number of epidemiologic studies have reported disease outcomes due to exposure to Agent Orange, while others were unable to establish a link to the injuries of veterans of the Vietnam War. This can be explained by the fact that accurate exposure assessment should be carried out since exposure misclassification in epidemiologic studies can affect estimates of risk. In the case of the burial of Agent Orange at Camp Carroll, an exposure pathway could be through underground water supplies, which differs from the cases of Vietnam and Seveso in Italy. Conclusion: There still remains a dispute among academics regarding the relationship between exposure to Agent Orange and disease, although Agent Orange is a highly toxic chemical. This dispute indicates that accurate exposure pathway and exposure assessment is needed.

Exposure to Environmental Endotoxin and Health Effects (환경 중의 엔도톡신 노출 및 건강에 미치는 영향)

  • Park, Ju-Hyeong
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.4
    • /
    • pp.265-278
    • /
    • 2014
  • Microbes such as bacteria, fungi, archaea, protists, and viruses are ubiquitous and people are exposed to them continuously. Endotoxin is a component of the outer membrane of Gram-negative bacteria and a potent proinflammaotry substance. When a person is exposed to environmental endotoxin, an innate immune response is initiated upon the initial recognition and this response produces various inflammatory mediators and recruits inflammatory cells to the exposed tissues. A purified chemical form of endotoxin is called lipopolysaccharide (LPS), and the lipid A portion of the molecule is a biologically active moiety. Exposure to endotoxin may result in various complex health effects depending on time, route, and dose of exposure, as well as host susceptibility. Gene-environment interactions play important roles in health effects of endotoxin exposure, e.g. development or aggravation of asthma. To accurately assess exposure to endotoxin in environmental or epidemiologic studies, methods of sampling, extraction, and analysis must be carefully selected since the selected methods may substantially affect analytical results and there is no internationally-agreed standard method to date. The lack of a standardized method hampers the establishment of exposure-response relationships. While an internationally-agreed health-based exposure limit does not exist, the Dutch Expert Committee on Occupational Safety recently recommended $90EU/m^3$ as a health-based occupational exposure limit. The current article reviews various scientific issues on how we measure environmental endotoxin and the health effects of endotoxin exposure.

Review of Exposure Assessment to Obtain Exposure Factors of Consumer Products (소비 생활용품의 노출계수 조사 방법의 고찰)

  • Park, Ji Young;Lee, Kiyoung;Shin, Ho-Sang;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.6
    • /
    • pp.532-540
    • /
    • 2013
  • Background: Exposure factors for consumer products have been developed since the 1980s. Such exposure factors are important in risk assessment. Since the exposure/use patterns of consumer products in a country may reflect its respective cultural, meteorological, and socio-economic circumstances, unique Korean exposure factors for consumer products are needed. Such exposure factors are required for newly-enacted chemical regulations in Korea. For this review, published papers and survey reports on exposure factors of consumer products were examined for their assessment methodologies. Results: Investigation into exposure factors for consumer products used a variety of methods: home visit, online, telephone, and mail surveys using questionnaires; face to face interviews; modeling using a constructed database; and direct measurement. To collect more accurate exposure information or to check the reliability of the sampling method, some studies were repeated using the same questionnaire, in-home observation, direct measurement of usage, and videotaping. In Korea, nationwide exposure surveys were conducted five times over five years to obtain Korean exposure factors. However, with the exception of the $5^{th}$-year study, the surveys were online questionnaires and only the $5^{th}$-year study validated the accuracy of exposure information by re-visits and direct measurement. Conclusion: Accurate exposure factors are an essential part of risk assessment to assure safe use of consumer products. For better and safer management of consumer products, accurate exposure factors in Korea should be assessed for various exposure pathways.

Exposure Assessment of Hazardous Chemical Agents for Dental Technicians in Ulsan City (울산지역 치과기공사들의 화학적 유해요인 노출 평가)

  • Hong, Youngho;Choi, Sangjun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.4
    • /
    • pp.215-221
    • /
    • 2011
  • Objectives: This study was conducted to evaluate the exposure level of hazardous chemical agents for dental technicians in Ulsan. Methods: We measured airborne total dusts and metals such as Nickel, Manganese, Cobalt, and Chromium in 10 dental laboratories by the NIOSH Methods 0500 and 7300, respectively. Methyl methacrylate (MMA), a key ingredient in acrylic resin, was also monitored using passive samplers for long-term sampling and Tenax tubes for short-term sampling. Results: Measured levels of all items were below 10% of the Korean exposure limit except for Nickel. The geometric mean concentration and geometric standard deviation of total dust, Nickel, and MMA were $0.14mg/m^3$ (2.16), $165.3{\mu}g/m^3$ (3.31), and 0.2 ppm (2.5) respectively. Airborne Nickel concentration of two dental laboratories exceeded the exposure limit ($1000{\mu}g/m^3$). The major emission sources of Nickel were metal trimming and casting processes. Conclusions: We found that Nickel, a carcinogen, should be controled most urgently to protect dental technicians.

Chronological Concentration Change of Five Chemical Substances in Manufacturing Industry of Busan Area (부산지역 일부 제조업 산업장의 기중 5가지 화학물질의 경시적 농도 변화)

  • Park, Joon Jae;Sun, Byong Gwan;Son, Byung Chul;Moon, Deog Hwan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.1
    • /
    • pp.68-80
    • /
    • 2006
  • This study aimed to prepare the fundamental data and assess the status and trend of exposure level for 5 chemical substances such as sulfuric acid, hydrogen chloride, ammonia, formaldehyde and phenol in manufacturing industry by type of industry, working process, and size of factory, chronological change. Subjects related to this study consist of 146 factories, 12 industries and 17 working processes located in Busan area from Jan. 1997 to Dec. 2001. 1. All 5 kinds of chemical substances by type of industry, working process were generated in chemical manufacturing industry. There were founded in 8 types of industries and 13 types of working processes for ammonia, which is the highest number of in all 5 chemical substances. 2. In terms of the exposure level for 5 chemical substances by type of industry, working process, geometric mean concentration for sulfuric acid was $0.40mg/m^3$ in manufacture of chemicals and chemical products, $0.30mg/m^3$ in compounding process, for hydrogen chloride was 0.57 ppm in manufacture of basic metal, 0.48 ppm in dyeing process, for ammonia was 1.11 ppm in manufacture of rubber and plastic products, 0.94 ppm in buffing process, for formaldehyde was 0.49 ppm in manufacture of wood and of products of wood and cork, except furniture; manufacture of articles straw and plating materials, 0.53 ppm in mixing process, and for phenol were 0.53 ppm in manufacture of chemical and chemical products, 0.55 ppm in compounding process, respectively. Results for 5 chemical substances by type of industry and working process were significantly higher than those of the others(p<0.05). 3. The exposure level for hydrogen chloride, formaldehyde were significantly increased by size of industry (p<0.01). ammonia was significantly decreased by size of industry (p<0.01). 4. In trend of the concentration difference of five chemical substances by chronology, geometric mean concentration for sulfuric acid was significantly increased (p<0.01), hydrogen chloride and ammonia were significantly decreased by year (p<0.05) and for formaldehyde and phenol were decreased in chronological change. According to the above results 5 chemical substances were founded together in a way mixed in the same places one another and concentrations of chemical substances by industry, working process, size of industry and year appeared markedly. The authors recommend more systemic and effective work environmental management should be conducted in workplaces generating five chemical substances.

Work Environment Measurement Results for Research Workers and Directions for System Improvement (연구활동종사자 작업환경측정 결과 및 제도개선 방향)

  • Hwang, Je-Gyu;Byun, Hun-Soo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.4
    • /
    • pp.342-352
    • /
    • 2020
  • Objectives: The characteristics of research workers are different from those working in the manufacturing industry. Furthermore, the reagents used change according to the research due to the characteristics of the laboratory, and the amounts used vary. In addition, since the working time changes almost every day, it is difficult to adjust the time according to exposure standards. There are also difficulties in setting standards as in the manufacturing industry since laboratory environments and the types of experiments performed are all different. For these reasons, the measurement of the working environment of research workers is not realistically carried out within the legal framework, there is a concern that the accuracy of measurement results may be degraded, and there are difficulties in securing data. The exposure evaluation based on an eight-hour time-weighted average used for measuring the working environment to be studied in this study may not be appropriate, but it was judged and consequently applied as the most suitable method among the recognized test methods. Methods: The investigation of the use of chemical substances in the research laboratory, which is the subject of this study, was conducted in the order of carrying out work environment measurement, sample analysis, and result analysis. In the case of the use of chemical substances, after organizing the substances to be measured in the working environment, the research workers were asked to write down the status, frequency, and period of use. Work environment measurement and sample analysis were conducted by a recognized test method, and the results were compared with the exposure standards (TWA: time weighted average value) for chemical substances and physical factors. Results: For the substances subject to work environment measurement, the department of chemical engineering was the most exposed, followed by the department of chemistry. This can lead to exposure to a variety of chemicals in departmental laboratories that primarily deal with chemicals, including acetone, hydrogen peroxide, nitric acid, sodium hydroxide, and normal hexane. Hydrogen chloride was measured higher than the average level of domestic work environment measurements. This can suggest that researchers in research activities should also be managed within the work environment measurement system. As a result of a comparison between the professional science and technology service industry and the education service industry, which are the most similar business types to university research laboratories among the domestic work environment measurements provided by the Korea Safety and Health Agency, acetone, dichloromethane, hydrogen peroxide, sodium hydroxide, nitric acid, normal hexane, and hydrogen chloride are items that appear higher than the average level. This can also be expressed as a basis for supporting management within the work environment measurement system. Conclusions: In the case of research activity workers' work environment measurement and management, specific details can be presented as follows. When changing projects and research, work environment measurement is carried out, and work environment measurement targets and methods are determined by the measurement and analysis method determined by the Ministry of Employment and Labor. The measurement results and exposure standards apply exposure standards for chemical substances and physical factors by the Ministry of Employment and Labor. Implementation costs include safety management expenses and submission of improvement plans when exposure standards are exceeded. The results of this study were presented only for the measurement of the working environment among the minimum health management measures for research workers, but it is necessary to prepare a system to improve the level of safety and health.