• Title/Summary/Keyword: Chemical Erosion

Search Result 195, Processing Time 0.024 seconds

Analysis of Wastewater Reuse Effect on Field-Scale Water Quality (하수처리수의 농업용수 재이용에 따른 포장단위 수질영향 분석)

  • Seong, Choung-Hyun;Kim, Sung-Jae;Kim, Sung-Min;Kim, Sang-Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.4
    • /
    • pp.59-65
    • /
    • 2011
  • The purpose of this study was to analyze the water quality change when wastewater applied to study paddy fields. CREAMS-PADDY (Chemical, Runoff and Erosion from Agricultural Management System) model was used to estimate the field-scale water quality. Simulated results were compared with observed data monitored from Byeongjeom study paddy fields which is located near the Suwon sewage treatment plant in Gyeonggi-do. Significance analysis was performed for the three different irrigation water quality level and five fertilizer reduction scenarios using LSD (Least Significant Difference) and DMRT (Duncan's Multiple Range Test). Total nitrogen was found to be significant for both irrigation water quality level and fertilizer reduction while total phosphorus was not. Annual drainage load for total nitrogen was reduced by 66~92 % compared to irrigation load when treated wastewater irrigated to study paddy fields from 2002 to 2007. Total phosphorus was reduced by 70~86 %.

An Experimental Study on Measurement of Corrosion Initiation in Reinforced Concrete Exposed to Chloride Using EIS Method (EIS를 이용한 염해에 노출된 철근콘크리트의 부식개시 측정에 관한 실험적 연구)

  • Park, Dong-Jin;Park, Jang-Hyun;Lee, Kwang-Soo;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.61-62
    • /
    • 2017
  • In this study, the initiation of steel corrosion was monitored due to chloride attack using embedded sensor. In general, Steel bars embedded in concrete are protected from corrosion by being forming a passive film on the surface. However, the passive film is destroyed by chemical erosion such as concrete carbonation and chloride penetration, and the rebar is exposed to the deteriorating factor and corrosion proceeds. In order to realize the initiation of steel corrosion, OCP and change of Impedance parameter were observed by using Half-cell and EIS method depending on cover depth. As result, 10mm cover showed the impedence increased in 6weeks.

  • PDF

Evaluation of the Dressed Soil applied in Mountainous Agricultural Land (산지농경지에 투입되는 모재성토의 특성과 농업환경에 미치는영향)

  • Joo, Jin-Ho;Park, Chol-Soo;Jung, Yeong-Sang;Yang, Jae-E;Choi, Joong-Dae;Lee, Won-Jung;Kim, Sung-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.245-250
    • /
    • 2004
  • Farmers typically apply the dressed soil (coarse saprolite) for various reasons in the sloped upland with high altitude in Kangwon province. However, little researches on the impacts of application of dressed soil in uplands were conducted. Therefore, it is necessary to assess soil quality in this area and to study adverse effects on soil and water due to application of dressed soil. Coarse saprolite itself showed signiScantly poor chemical properties, Particularly P and organic matter contents were not enough for crops to grow. With respect to biological qualities such as enzyme activity and microbial population, coarse saprolite itself showed poor qualities. For example, bacterial population in coarse saprolite contains six times or ten times smaller populations. Based on survey at Jawoon-ri in Hongchon-gun, this region is susceptible for soil erosion due to massive amounts of coarse saprolite application, undesirably long slope length, etc. When weestimated soil loss, more than 40% of farming field in this region exceeded $11.2MT\;ha^{-1}\;yr^{-1}$. According to experiment by installing sediment basins. the sediment basin with up-down tillage and application with dressed soil had the highest soil loss and runofT, while the sediment basin with contour tillage and without soil dressing showed the lowest soil erosion and runoff.

Application of SWAT for the Estimation of Soil Loss in the Daecheong Dam Basin (대청댐 유역 토양 침식량 산정을 위한 SWAT 모델의 적용)

  • Ye, Lyeong;Yoon, Sung-Wan;Chung, Se-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.149-162
    • /
    • 2008
  • The Soil and Water Assessment Tool (SWAT) developed by the USDA-Agricultural Research Service for the prediction of land management impact on water, sediment, and agricultural chemical yields in a large-scale basin was applied to Daecheong Reservoir basin to estimate the amount of soil losses from different land uses. The research outcomes provide important indications for reservoir managers and policy makers to search alternative watershed management practices for the mitigation of reservoir turbidity flow problems. After calibrations of key model parameters, SWAT showed fairly good performance by adequately simulating observed annual runoff components and replicating the monthly flow regimes in the basin. The specific soil losses from agricultural farm field, forest, urban area, and paddy field were 33.1, $2.3{\sim}5.4$ depending on the tree types, 1.0, and 0.1 tons/ha/yr, respectively in 2004. It was noticed that about 55.3% of the total annual soil loss is caused by agricultural activities although agricultural land occupies only 10% in the basin. Although the soil erosion assessment approach adopted in this study has some extent of uncertainties due to the lack of detailed information on crop types and management activities, the results at least imply that soil erosion control practices for the vulnerable agricultural farm lands can be one of the most effective alternatives to reduce the impact of turbidity flow in the river basin system.

Problems of lake water management in Korea (한국의 호수 수질관리의 문제점)

  • 김범철;전만식;김윤희
    • Proceedings of the Korean Society of Environment and Ecology Conference
    • /
    • 2003.10a
    • /
    • pp.105-126
    • /
    • 2003
  • In Korea most of annual rainfall is concentrated in several episodic heavy rains during the season of summer monsoon and typhoon. Because of uneven rainfall distribution many dams have been constructed in order to secure water supply in dry seasons. The Han River system has the most dams among Korean rivers, and the river is a series of dams now. Reservoirs need different strategy of water quality control from river water. Autochthonous organic matter and phosphorus should be the major target to be controlled in lakes. In this Paper some problems are discussed that makes efforts of water quality improvement ineffective in lakes of Korea, even after the substantial investment to wastewater treatment facilities.1) Phosphorus is the key factor controlling eutrophication of lakes and the reduction ofphosphors should be the major target of water treatment. However, water quality management strategy in Korea is still stream-oriented, and focused on BOD removal from sewage. Phosphorus removal efficiency remains as low as 10-30%, because biological treatment is adopted for both secondary treatment and advanced treatment. The standard for TP concentration of the sewage treatment plant effluent is 6 mgP/l in most of regions, and 2 mg/l in enforced region near metropolitan water intake point. TP in the effluents of sewage treatment plants are usually 1-2 mg/1, and most of plants meet the effluent regulation without a further phosphorus removal process. The generous TP standard for effluents discourages further efforts to improve phosphorus removal efficiency of sewage treatment. Considering that TP standard for the effluent is below 0.1 mg/l in some countries, it should be amended to below 0.1 mg/l in Korea, especially in the watershed of large lakes.2) Urban runoff and combined sewer overflow are not treated, even though their total loading into lakes can be comparable to municipal sewage discharges on dry days. Chemical coagulation and rapid settling might be the solution to urban runoff in regard of intermittent operation on only rainy days.3) Aggregated precipitation in Korea that is concentrated on several episodic heavyrains per year causes a large amount of nonpoint source pollution loading into lakes. It makes the treatment of nonpoint source discharge by methods of other countries of even rain pattern, such as retention pond or artificial wetland, impractical in Korea.4) The application rate of fertilizers in Korea is ten times as high as the average ofOECD countries. The total manure discharge from animal farming is thought to be over the capacity of soil treatment in Korea. Even though large portion of manure is composted for organic fertilizer, a lot of nutrients and organic matter emanates from organic compost. The reduction of application rate and discharge rate of phosphorus from agricultural fields should be encouraged by incentives and regulations.5) There is a lot of vegetable fields with high slopes in the upstream region of the HanRiver. Soil erosion is severe due to high slopes, and fertilizer is discharged in the form of adsorbed phosphorus on clay surface. The reduction of soil erosion in the upland area should be the major preventive policy for eutrophication. Uplands of high slope must be recovered to forest, and eroded gullies should be reformed into grass-buffered natural streams which are wider and resistant to bank erosion.

  • PDF

A Study on the Forest Ecology in Young-il Soil Erosion Control District (영일사방사업지(迎日砂防事業地)의 삼림생태학적(森林生態學的) 연구(硏究))

  • Hong, Sung Cheon
    • Journal of Korean Society of Forest Science
    • /
    • v.58 no.1
    • /
    • pp.41-47
    • /
    • 1982
  • The large devastated land in Young-il district, Gyeongsangbusdo, had been existed for a long time, and the Korean government had invested 3.8 billion won to control soil erosion of the area for 5 years from 1973 to 1977. This research was to investigate the changes of the soil profile and vegetation structure in the 3rd, 6th and 9th years since soil erosion control had implemented. The results obtained in this study are as follows: 1) The thickness of the litter layer (L), the fermentation layer(F), the humified layer(H) and the surface soil layer(S) increased with increasing years after implements soil erosion control project had started. 2) The H layer was not showed for the three years since the project had implemented but was in the sixty year. 3) The soil chemical elements including the organic matter and total nitrogen increased with increasing years after the project had started, the amounts of organic matter and total nitrogen were three and seven times higher respectively in the nineth year after project had started. The amounts of organic matter and total nitrogen were three and seven times higher, respectively in the nineth year after project started than those before. 4) Among the grasses and trees which had been sowed or planted during project period, the summed domination ratios for arundinella hirta var ciliare. Themeda japonica, Cymbopogen goeringi and Lespedeza bicolor decreased rapidly, while those for Robinia pesudoacacia and Pinus densiflora increased with increasing years after the project started. 5) The appearance of Quercus seedlings suited to this area and Pinus densiflora seedling which is a subclimax species increased with increasing years after the project started.

  • PDF

Investigation of Plugging and Wastage of Narrow Sodium Channels by Sodium and Carbon Dioxide Interaction (소듐과 이산화탄소 반응에 의한 소듐유로막힘 및 재료손상 현상 연구)

  • Park, Sun Hee;Min, Jae Hong;Lee, Tae-Ho;Wi, Myung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.863-870
    • /
    • 2016
  • We investigated the physical/chemical phenomena that a slow loss of $CO_2$ inventory into sodium after the sodium-$CO_2$ boundary failure in printed circuit heat exchangers (PCHEs), which is considered for the supercritical $CO_2$ Brayton cycle power conversion system of a sodium-cooled fast reactor (SFR). The first phenomenon is plugging inside narrow sodium channels by micro cracks and the other one is damage propagation referred to as wastage combined with the corrosion/erosion effect. Experimental results of plugging shows that sodium flow immediately stopped as $CO_2$ was injected through the nozzle at $300{\sim}400^{\circ}C$ in 3 mmID sodium channels, whereas sodium flow stopped about 60 min after $CO_2$ injection in 5 mmID sodium channels. These results imply that if pressure boundary of sodium-$CO_2$ fails a narrow sodium channel would be plugged by reaction products in a short time whereas a relatively wider sodium channel would be plugged with higher concentration of reaction products. Wastage by the erosion effect of $CO_2$ (200~250 bar) hardly occurred regardless of the kinds of materials (stainless steel 316, Inconel 600, and 9Cr-1Mo steel), temperature ($400{\sim}500^{\circ}C$), or the diameter of the $CO_2$ nozzle (0.2~0.8 mm). Velocities at the $CO_2$ nozzle were specified as Mach 0.4~0.7. Our experimental results are expected to be used for determining the design parameters of PCHEs for their safeties.

BCNU Release Behaviour from BCNU/PLGA Wafer Prepared by Vacuum Drying Method (진공 건조법에 의해 제조된 BCNU/PLGA웨이퍼의 BCNU 방출거동)

  • Park, Jung-Soo;Shin, Joon-Hyun;Lee, Doo-Hee;Rhee, John-M.;Kim, Moon-Suk;Lee, Hai-Bang;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.201-205
    • /
    • 2007
  • Biodegradable polymers such as polylactide, polyglycolide and poly (lactide- co-glycolide) (PLGA) have been extensively investigated because of easily controlled drug release rate, completely degradable materials without the toxic by-product, and good biocompatibility. But, according to the bulk erosion property of PLGA in vitro test, it had the disadvantage that first-order release reduced releasing amount slowly after excessive initial burst. In this study we used PLGA powder obtained through recrystallization to revise bulk erosion property of PLGA. The PLGA used in this study was prepared by vacuum drying method and to estimate release profiles of BCNU loaded PLGA wafer. We also evaluated the release profile of drug with the water soluble additive. It was found that the drug loaded PLGA recrystallized by vacuum drying method exhibited the initial burst and the constant rate of drug release compared to that prepared by a conventional method.

Soil properties of barrier island habitats in the Nakdong river estuary (낙동강 하구 주요 사주 서식지 토양 특성)

  • Yi, Yong Min;Yeo, Un Sang;Sung, Kijune
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.355-362
    • /
    • 2014
  • Changes of soil properties due to sedimentation and erosion in the river estuary may lead changes in environmental factors that affect plant growth and distribution, Then habitats in the river estuary that provide various ecological functions can also be influenced. Topsoil samples were analyzed in order to understand the soil properties of important barrier islands and habitat types in the Nakdong river estuary. The samples were obtained from Phragmites communis and Scirpus planiculmis habitats, the tidal flats in the southern area of Eulsukdo, and in Mangeummerydeung, Baekhapdeung, and Doyodeung. Analyses results showed that bulk density, pH, organic matter content and total nitrogen concentration which were directly or indirectly affected by vegetation showed significant difference (p<0.05) with habitat types but no differences in water content and oxidation reduction potential which could be affected by soil texture and showed significant difference among barrier islands. Results suggested that soil properties on barrier islands in the Nakdong river estuary were influenced first by geomorphic changes due to sedimentation and erosion, and then by the presence or type of vegetation. A range of physical and chemical properties were analyzed; soil water content and bulk density (physical properties), and organic content and pH (chemical properties) were correlated with seven other soil properties, at a level of significance higher than 90%. These aspects played an important role in determining overall soil properties in the studied area.

Deterioration Characteristic of Shotcrete Immersed in Chemical Solution (화학적 침식에 의한 숏크리트의 열화특성 분석 - 단기거동)

  • Lee, Gyu-Phil;Kim, Dong-Gyou;Bae, Gyu-Jin;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.143-152
    • /
    • 2005
  • Shotcrete for support of tunnel structures may contact with groundwater. The hazardous components in groundwater may cause corrosion of shotcrete. Also, the hazardous components may deteriorate the engineering properties of shotcrete, such as compressive strength, bond strength, flexural strength and so forth. The more the effect of the hazardous components on the shotcrete may increase, the more the stability of tunnel structure may decrease. The specimens were artificially immersed in various chemical solutions including hazardous components after the specimens were made at the tunnel construction site. It was performed to analyze the effect of the hazardous components in ground water on the engineering properties of shotcrete. The uniaxial compressive strength test, XRD, SEM were conducted to evaluate the durability and corrosion of shotcrete.

  • PDF