• Title/Summary/Keyword: Chemical Characteristics of Soil

Search Result 914, Processing Time 0.026 seconds

Characteristics of Soil Chemical Properties in Abandoned Coal Mine Forest Rehabilitation Areas in Boryeong City, Chungcheongnam-do

  • Jung, Mun Ho;Shim, Yon Sik;Kim, Yoon Su;Park, Mi Jeong;Jung, Kang Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.744-750
    • /
    • 2015
  • The objectives of this study were to investigate soil chemical characteristics for forest rehabilitation and suggest management in abandoned coal mine areas in Boryeong City, Chungcheongnam-do. Total study sites were seven sites, and soil properties analyzed were soil pH, total organic carbon (TOC), total-N, C/N ratio, and available $P_2O_5$ (A.v. P). Average soil pH (range) was 5.9 (4.5~7.0). Three study sites (Samgwang, Shinsung1, and Shimwon1) showed lower soil pH than standard (pH 5.6~7.3) of Korea Industrial Standards (KS) for abandoned coal mine forest rehabilitation. Average contents of TOC, and total-N were 1.5% (0.1~4.7%), and 0.10% (0.03~0.23%), respectively. Five study sites where the collapsed time was less than 10 years (Wangjashingang, Wonpoong, Samgwang, Shinsung1, and Shinsung2) showed lower TOC level than standard of KS (more than 1.2%). Wangjashingang, Wonpoong, Samgwang, and Shinsung1 showed lower level of total-N than standard of KS (more than 0.09%). C/N ratio of six study sites except Shimwon1 was out of proper range (15:1~30:1). Average A.v. P (range) was $20.7mgkg^{-1}$ (4.8~63.1), less than other abandoned coal mine fores rehabilitation areas in Mungyong City, and Hwasun-gun. TOC, total N and A.v. P increased with elapsed time from forest rehabilitation, while other soil properties did not show distinct pattern. Betula platyphylla was planted in Samkwang and Sinsung where soil pH was less than KS standard. Because the growth of Betula platyphylla can be limited in acid soil, it is necessary to neutralize soil pH to proper level with some soil amendment such as lime or shell of oyster. Furthermore, TOC, total-N and A.v. P in early stage of forest rehabilitation showed lower level than proper to vegetation growth. Therefore it needs continuous monitoring of soil characteristics and fertilization for vegetation growth and influx from surrounding forest in early stage of rehabilitation.

Effect of Pig Slurry Fertigation on Soil Chemical Properties and Yield of Tomato (Lycopersicon esculentum Mill.) (돈분 액비 관비가 토마토의 수량 및 토양화학성에 미치는 영향)

  • Park, Jin-Myeon;Lim, Tae-Jun;Kang, Seok-Boem;Lee, In-Bok;Kang, Yun-Im
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.610-615
    • /
    • 2010
  • This study was conducted to evaluate fertigation effects of pig slurry (PS) and chemical fertilizer (CF) in tomato by analyzing the growth and yield, nutrient content and uptake, nutrient use efficiency, and soil characteristics in greenhouse cultivation. The treatments compared were; no-fertilizer, two different levels of PS (26 mg $L^{-1}$ and 52 mg $L^{-1}$), and a control treatment of chemical fertilizer. There was no significant difference in growth and yield between PS and CF treatments. however, yield reduction was observed in PS 26 mg $L^{-1}$ treatment. The N-utilization efficiency in CF treatment was similar to that of PS 52 mg $L^{-1}$ treatment. Nutrient utilization efficiency decreased in order of potassium (K), nitrogen (N), phosphate (P) with 29.2~43.3% in K, 15.8~36.7% in N, and 3.0~6.3% in P. In soil chemical characteristics, soil pH in PS treatment was higher than in CF treatment. In contrast, nitrate content in soil was higher in CF treatment than in PS treatment. The content of exchangeable K in soil was higher in PS and CF 52 mg $L^{-1}$ treatments. There was no significant difference in exchangeable Ca and Mg among those treatments. Therefore, it can be concluded that chemical fertilizers can be substituted by PS based on soil chemical analysis in tomato fertigation culture.

Soil Chemical Properties in Asian Dust Source region in Northern China (황사발생지역에서 토양입자의 화학적 특성)

  • Han, J.S.;Shin, Sun-A;Kong, B.J.;Park, M.S.;Park, S.U.;Kim, S.J.
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.6
    • /
    • pp.277-284
    • /
    • 2004
  • The chemical composition and properties of soil were determined at selected sites, such as Loess plateau, Gobi and sand deserts in northern China, where most dust storms occur. Although the transport of this sort of dust storms to Korean peninsula is a well-documented phenomenon, there is not enough information about the very source regions. In this reason, this study tried to measure the chemical composition, including soil elements, anthropogenic elements and ions for soil samples so that certain properties of some major source regions of Asian Dust can be provided. Furthermore, the results are classified into four types of soil like Loess, Loess & sand, Gobi, and sand in order to identify the characteristics and difference among the types. $(X/Al)_{crust}$ values for each soil type were also calculated in this study and compared with those of other references including Asian Dust material(ADM). The results indicated that Ca contribution was higher than Al in all the soil types of this study including ADM and, compared with the values of urban area, contribution of anthropogenic elements such as Cr, Pb, Zn was quite low. However, it must be noted that there is such a variation in the result of soil composition, but it is also certain that the very source region soil composition resolved from this study could support the enhanced study on Asian Dust phenomenon in Korea.

Effects of Irrigation Times and Soil Media on the Growth and Physiological Characteristics of Native Fern Asplenium scolopendrium (관수주기와 상토조성이 자생 골고사리(Asplenium scolopendrium)의 생육과 생리에 미치는 영향)

  • Ju, Jin-Hee;Bang, Kwang-Ja
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.6 s.107
    • /
    • pp.109-116
    • /
    • 2005
  • This study was conducted to examine the growth and physiological characteristics of Asplenium scolopendrium native fern as affected by irrigation times and soil media as an environment modeled on habitate where was sunken-condition. 1. Light intensity was lower in sunken than in non-sunken, but air humidity was higher in sunken about $2040\%$. Soil moisture content was higher with the leaf mold in sunken irrigating 2 times/week. The results of chemical analysis of medium showed that EC, pH, organic matter content, total nitrogen, CEC, Exch-Ca, Exch-Mg and Exch-K were higher with leaf mold than sud: leafmold and field soil: sud: leaf mold. 2. In the case of irrigation 2 times/week Asplenium scolopendrium grew well sunken more than non-sunken. As non-sunken condition similar with, 7 times/week irrigation, plant height, frond width, frond length and stipe length increased. In case of soil media, growth of Asplenium scolopendrium was better with leaf mold than that of sand: leafmold or field soil: sand: leaf mold. 3. In the case of irrigation 2 times/week photosynthetic rate, $CO_2$ absorption rate and water efficiency were higher with non-sunken than that of sunken, expect of stomatal conduction, $CO_2$ use efficiency. The physiological characteristics of Asplenium scolopendrium were highest in non-sunken irrigating 7 times/week In case of soil media, physiological activity was higher with leaf mold than sand: leafmold or field soil: sand: leaf mold.

Soil Physico-Chemical Properties and Characteristics of Microbial Distribution in the Continuous Cropped Field with Paeonia lactiflora (작약 연작재배지의 토양 이화학성 및 미생물 분포특성)

  • Park, Jun-Hong;Seo, Yeong-Jin;Choi, Seong-Yong;Zhang, Yong-Sun;Ha, Sang-Keun;Kim, Jang-Eok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.841-846
    • /
    • 2011
  • This study was conducted to obtain the information about injury caused by continuous cropping of peony (Paeonia lactiflora). Soil physico-chemical properties, characteristics of microbial distribution and diversities in the continuous cropped field with peony were analyzed. As the results, pH and organic matter content were higher in the continuous cropping soil than those in the first cropping soil. Bulk density was decreased but porosity was increased in the continuous cropping soil. As the cultivation period was lengthened in years, the populations of bacteria and actinomyces were gradually decreased, whereas fungal population was increased. It was shown that the metabolic diversity patterns of the microbial communities in the continuous cropping soil differed from that of the first cropping soil. These results indicate that deterioration of soil quality such as physico-chemical properties including a soil depth, bulk density, porosity and soil pH is related with a continuous cultivation periods, and also affect a microbial population, especially fungi.

Relationship among Dormant Root Rate Missing Root Rate and Soil Chemical Characteristics in Ginseng Plantations (산지삼포에서 면삼율 결주율 및 토양화학성의 상호관계)

  • 박훈;김갑식;변정수
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.2
    • /
    • pp.180-183
    • /
    • 1985
  • Percent dormant root and percent missing root were investigated in ginseng (Panax ginseng) plantations and correlated with soil chemical characteristics. Percent dormant root showed no consistency with root age and significant positive correlation with percent missing root in many cases. Percent dormant root showed significant positive correlation with available phosphorus and phosphorus-moisture ratio in soils. Percent missing root showed significant negative correlation with moisture and calcium in soil and positive one with phosphorus - moisture ratio. Above results strongly suggest that excess phosphorus and water stress are the common causes of dormancy and missing of root.

  • PDF

Research on Characteristics of Multifunctional Soil Binder Based on Polyacrylamide (폴리아크릴아마이드를 기반으로 하는 다기능성 토양안정제의 특성에 관한 연구)

  • Kim, Jin Kyung;Kim, Dae Ho;Joo, Sang Hyun;Lee, Myung Cheon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.155-161
    • /
    • 2018
  • For the efficient recovering of collapsed sloped soil, using a soil binder that can support the soil strongly and help the growth of plants is very important. The soil binder should also have functions of recovering the soil ecologically as well as be environmental friendly materials. In this research, optimum values of the water content and permeability and direct shear strength were searched by adding the water absorbent and coagulant into the soil binder. The polyacrylamide (PAM) with various anionic strength, super absorbent polymer (SAP) and cellulose ether (CE) were used as a soil binder, water absorbent and coagulant, respectively. Effects of the soil binder on the characteristics of soil were observed by changing the mixing ratio of PAM, SAP and CE. Experimental results showed that the soil binder increased the direct shear strength tens of times and the water content around two times, whereas decreased the water permeability. Also, the addition of CE to increase the coagulation of SAP increased more of the direct shear strength and water content.

Development of Soil Organic Carbon Storage Estimation Model Using Soil Characteristics (토양 특성을 이용한 토양유기탄소저장량 산정 모형 개발)

  • Lee, Taehwa;Kim, Sangwoo;Shin, Yongchul;Jung, Younghun;Lim, Kyoung-Jae;Yang, Jae E;Jang, Won Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • Carbon dioxide is one of the major driving forces causing climate changes, and many countries have been trying to reduce carbon dioxide emissions from various sources. Soil stores more carbon dioxide(two to three times) amounts than atmosphere indicating that soil organic carbon emission management are a pivotal issue. In this study, we developed a Soil Organic Carbon(SOC) storage estimation model to predict SOC storage amounts in soils. Also, SOC storage values were assessed based on the carbon emission price provided from Republic Of Korea(ROK). Here, the SOC model calculated the soil hydraulic properties based on the soil physical and chemical information. Base on the calculated the soil hydraulic properties and the soil physical chemical information, SOC storage amounts were estimated. In validation, the estimated SOC storage amounts were 486,696 tons($3.526kg/m^2$) in Jindo-gun and shown similarly compared to the previous literature review. These results supported the robustness of our SOC model in estimating SOC storage amounts. The total SOC storage amount in ROK was 305 Mt, and the SOC amount at Gyeongsangbuk-do were relatively higher than other regions. But the SOC storage amount(per unit) was highest in Jeju island indicating that volcanic ashes might influence on the relatively higher SOC amount. Based on these results, the SOC storage value was shown as 8.4 trillion won in ROK. Even though our SOC model was not fully validated due to lacks of measured SOC data, our approach can be useful for policy-makers in reducing soil organic carbon emission from soils against climate changes.

Characterization of Humic and Fulvic Acids Extracted at the Soils of Korea and Its DB Establishment (국내 토양 휴믹물질의 특성 규명 및 DB 구축에 대한 연구)

  • 이창훈;유지호;신현상;정근호;이창우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.397-400
    • /
    • 2003
  • In this study, humic and fulvic acids in soils at the vicinity of domestic atomic power plants(NPPs), located in Yungkwang(YK), Uljin(UJ), Kori(KR), Koseong(KS), Wolseong(WS) area, and in volcanic ash soils of the Cheju island(Mt. Hanla(HL), Manjanggul(MJ)) were isolated, and characterized using chemical(elemental analysis, proton exchange capacity, molecular size distribution) and spectroscopic(UV/Vis., IR, FL, $^{13}$ C NMR spectra) methods. The results were compared with one another and compiled for their DB establishments. The humic substances distribution (humic acid, fulvic acid, Humin) in the soils were also determined by IHSS standard method. Main purpose of this study was to provide a basic data needed to evaluate the effect of humic substances on the migrational behaviour of radioactive elements in contaminated surface soil.

  • PDF

Characteristics of Soil Chemical Properties in Abandoned Coal Mine Forest Rehabilitation Areas in Mungyeong, Gyeongsangbuk-do (경상북도 문경시 폐탄광 산림복구지 토양의 화학적 특성)

  • Jung, Mun Ho;Shim, Yon Sik;Kim, Tae Heok;Oh, Ji Young;Jung, Yeong Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.733-737
    • /
    • 2012
  • The objectives of this study were to investigate soil chemical properties for forest rehabilitation and suggest design and management in abandoned coal mine areas in Mungyeong, Gyeongsangbuk-do. Total study sites were 10 sites, and soil analysis particular were soil pH, TOC, total-N, C/N ratio, A.v. $P_2O_5$, and CEC. Because most of study sites showed soil pH from 5.0 to 7.0, it seems that soil pH does not affect growth of vegetation. But soil pH in Danbong1 was acidic (pH 4.6), so it is needed to improve with ameliorant such as limestone. Most of study sites is necessary to manage for organic matter and Nitrogen, because there sites showed lower value of TOC and total-N than general forest. The values of A.v. $P_2O_5$ and CEC were good in most of study sites, so it seems that they do not have effect on vegetation growth. All of soil factors has no regression according to elapsed time after rehabilitation. TOC, total-N and A.v. $P_2O_5$ among soil properties have positive relationship between each other. It is necessary to fertilizer for organic matter and Nitroge because of value in TOC, total-N and C/N ratio. The results of this study were analyzed only one time. So, long-term monitoring for soil properties is important for the correct forest rehabilitation and management.