• Title/Summary/Keyword: Chemical Bath Deposition

Search Result 147, Processing Time 0.022 seconds

The Research of Ni Electroless Plating for Ni/Cu Front Metal Solar Cells (Ni/Cu 금속전극 태양전지의 Ni electroless plating에 관한 연구)

  • Lee, Jae-Doo;Kim, Min-Jeong;Kim, Min-Jeong;Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.328-332
    • /
    • 2011
  • The formation of front metal contact silicon solar cells is required for low cost, low contact resistance to silicon surface. One of the front metal contacts is Ni/Cu plating that it is available to simply and inexpensive production to apply mass production. Ni is shown to be a suitable barrier to Cu diffusion into the silicon. The process of Ni electroless plating on front silicon surface is performed using a chemical bath. Additives and buffer agents such as ammonium chloride is added to maintain the stability and pH control of the bath. Ni deposition rate is found to vary with temperature, time, utilization of bath. The experimental result shown that Ni layer by SEM (scanning electron microscopy) and EDX analysis. Finally, plated Ni/Cu contact solar cell result in an efficiency of 17.69% on $2{\times}2\;cm^2$, Cz wafer.

pH Effects of Electroless Ni Plating on ABS Plastics

  • Song, T.H.;Lee, J.K.;Ryoo, K.K.;Lee, Y.B.
    • Corrosion Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.26-29
    • /
    • 2004
  • Metal plated plastics are becoming more prevalent in materials of communication parts. A new technique MmSH is a process of injecting plastics to produce innovated physical properties compared to the conventional injection process. This study involves two ways of coating plastics Ni by electroless plating and varying bath and plasma treatment for improved adhesion strength between plating layer and surface. MmSH injection processed ASS with plasma treated after neutralization showed a superior adhesion force and a gloss and rate of deposition when it was in pH 7.5. On the other hand, conventional injection processed ASS was in pH 6.5.

Studies on the Chemical Plating of Nickel and Chromium on Steel (화학도금법에 의한 강의 니켈 및 크롬도금)

  • Kim, Man;Kim, Dai-Ryong;Yoon, Byung-Ha
    • Journal of the Korean institute of surface engineering
    • /
    • v.15 no.3
    • /
    • pp.127-137
    • /
    • 1982
  • In chemical plating of nickel and chromium on steel, studies on various factors affect-ing the plating operations were carried out. The optimum bath compositions and operat-ing conditions were obtained. The structure and properties of the as deposits or deposits after heat treatment were investigated. (1) The most optimum conditions for the chemical nickel and chromium plating were; 〔Ni2+〕/〔H2PO2-〕; 0.5∼0.8, 〔Cr3+〕/〔H2PO2-〕; 0.6∼0.9 PH;5.0∼5.5, temperature; 90∼95$^{\circ}C$ (2) In the case of nickel deposition, the hardness of deposits increased with increasing phosphorous contents. Heat-treating at the temperature range 200$^{\circ}C$ to 600$^{\circ}C$, the maximum hardness of deposits was obtained at 400$^{\circ}C$ and decreased at temperature above 400$^{\circ}C$ due to growth of Ni3P. (3) Corrosion resistance of chemical nickel deposits was improved with increasing of p-hosphorous contents and heat treating temperature.

  • PDF

Effect of Pre/Post-Treatment on the Performance of Cu(In,Ga)(S,Se)2 Absorber Layer Manufactured in a Two-Step Process (KCN 에칭 및 CdS 후열처리가 Cu(In,Ga)(S,Se)2 광흡수층 성능에 미치는 영향)

  • Kim, A-Hyun;Lee, GyeongA;Jeon, Chan-Wook
    • New & Renewable Energy
    • /
    • v.17 no.4
    • /
    • pp.36-45
    • /
    • 2021
  • To remove the Cu secondary phase remaining on the surface of a CIGSSe absorber layer manufactured by the two-step process, KCN etching was applied before depositing the CdS buffer layer. In addition, it was possible to increase the conversion efficiency by air annealing after forming the CdS buffer layer. In this study, various pre-treatment/post-treatment conditions wereapplied to the S-containing CIGSSe absorber layerbefore and after formation of the CdS buffer layer to experimentally confirm whether similareffects as those of Se-terminated CIGSe were exhibited. Contrary to expectations, it was noted that CdS air annealing had negative effects.

Influence of Tri-Sodium Citrate on ZnS buffer layer prepared by Chemical bath deposition

  • Song, Chan-Mun;Lee, Sang-Hyeop;Eom, Tae-U;Im, Dong-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.405-405
    • /
    • 2016
  • CIGS 박막 태양전지에서 완충층으로 사용되는 ZnS는 단파장 영역에서 높은 투과도와 CIGS 계면과의 좋은 접착을 가지고 친환경적이며 3.74eV의 에너지 밴드갭을 가지고 있기 때문에 CdS를 사용했을 때 보다 더 넓은 에너지 영역의 광자를 p-n 접합 경계 영역으로 통과 시킬 수 있고 Cd-free 물질이라는 점에서 기존의 CdS 완충층의 대체 물질로 각광 받고 있다. 본 연구에서는 CIGS 박막에 화학습식공정 방법을 이용하여 최적화된 ZnS 박막의 증착 조건을 찾기 위해 실험 변수인 시약의 농도, 실험온도, 열처리 조건 등의 다양한 변화를 통해 실험을 진행하였고, 박막의 갈라짐과 pin-hole 현상을 개선하고 균일한 막을 제조하기 위해 구연산 나트륨 농도에 따른 ZnS 박막의 특성을 연구하였다. 본 실험 결과로서 실험변수인 황산아연의 농도 0.15M, 암모니아는 0.3M, 티오요소 1M, 공정 온도 $80^{\circ}C$의 최적화 된 조건에서 가장 좋은 품질의 ZnS 박막을 제조하였지만, ZnS 박막의 열처리 후 산소의 양이 줄어감에 따라 박막의 표면이 갈라지고 pin-hole 현상이 발생하는 것을 확인할 수 있었다. 박막의 품질을 개선하기 위해 구연산 나트륨을 첨가하여 실험한 결과 구연산 나트륨의 0.05M의 농도에서는 박막 표면에 90nm의 갈라짐의 크기와 pin-hole 현상이 남아있는 것을 확인하였고, 농도가 높아질수록 점차 크기가 줄어들면서 0.4M에서는 갈라짐이 거의 없는 표면과 pin-hole 현상도 없어지는 것을 확인하였고, 약 144nm의 박막 두께와 3.8eV의 에너지 밴드갭을 가지고, 약 81%의 높은 광투과율을 갖는 고품질의 ZnS 박막을 제작할 수 있었다.

  • PDF

Growth and Characterization of ZnSe Thin Film for Blue Diode (청색 Diode 개발을 위한 ZnSe 박막성장과 특성에 관한 연구)

  • 박창선;홍광준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.533-538
    • /
    • 2001
  • The ZnSe sample grown by chemical bath deposition (CBD) method were annealed in Ar gas at 450$^{\circ}C$ Using extrapolation method of X-ray diffraction pattern, it was found to have zinc blend structure whose lattice parameter a$\_$o/ was 5.6687 ${\AA}$. From Hall effect, the mobility was likely to be decreased by impurity scattering at temperature range from 10 K to 150 K and by lattice scattering at temperature range from 150 K to 29 3K. The band gap given by the transmission edge changed from 2.7005 eV at 293 K to 2.8739 eV at 10 K. Comparing photocurrent peak position with transmission edge, we could find that photocurrent peaks due to excition electrons from valence band, $\Gamma$$\_$8/ and $\Gamma$$\_$7/ to conduction band $\Gamma$$\_$6/ were observed at photocurrent spectrum. From the photocurrent spectra by illumination of polarized light on the ZnSe thin film, we have found that values of spin orbit coupling splitting Δso is 0.0981 eV. From the PL spectra at 10 K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0612 eV and the dissipation energy of the donor -bound exciton and acceptor-bound exciton to be 0.0172 eV, 0.0310 eV, respectively.

  • PDF

Characterization of CdS Thin Films for Compound Photovoltaic Applications by Atmospheres of Rapid Thermal Process (급속열처리 분위기에 따른 화합물 태양전지용 CdS 박막의 특성변화)

  • Park, Seung-Beum;Kwon, Soon-Il;Lee, Seok-Jin;Jung, Tae-Hwan;Yang, Kea-Joon;Lim, Dong-Gun;Park, Jae-Hwan;Song, Woo-Chang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.105-106
    • /
    • 2008
  • Structural, optical and electrical properties of CdS films deposited by chemical bath deposition (CBD), which are a very attractive method for low-cost and large-area solar cells, are presented. Cadmium sulfide (CdS) is II-VI semiconductor with a wide band gap of approximately 2.42 eV. CdS films have a great application potential such as solar cell, optical detector and optoelectronics device. In this paper, effects of Rapid Thermal Process (RTP) on the properties of CdS films were investigated. The CdS films were prepared on a glass by chemical bath deposition (CBD) and subsequently annealed at standard temperature $(400^{\circ}C)$ and treatment time (10 min) in various atmospheres (air, vacuum and $N_2$). The CdS films treated RTP in $N_2$ for to min were showed larger grain size and higher carrier density than the other samples.

  • PDF

Structural, Optical and Photoconductive Properties of Chemically Deposited Nanocrystalline CdS Thin Films

  • Park, Wug-Dong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.164-168
    • /
    • 2011
  • Nanocrystalline cadmium sulphide (CdS) thin films were prepared using chemical bath deposition (CBD), and the structural, optical and photoconductive properties were investigated. The crystal structure of CdS thin film was studied by X-ray diffraction. The crystallite size, dislocation density and lattice constant of CBD CdS thin films were investigated. The dislocation density of CdS thin films initially decreases with increasing film thickness, and it is nearly constant over the thickness of 2,500 ${\AA}$. The dislocation density decreases with increasing the crystallite size. The Urbach energies of CdS thin films are obtained by fitting the optical absorption coefficient. The optical band gap of CdS thin films increases and finally saturates with increasing the lattice constant. The Urbach energy and optical band gap of the 2,900 A-thick CdS thin film prepared for 60 minutes are 0.24 eV and 2.83 eV, respectively. The activation energies of the 2,900 ${\AA}$-thick CdS thin film at low and high temperature regions were 14 meV and 31 meV, respectively. It is considered that these activation energies correspond to donor levels associated with shallow traps or surface states of CdS thin film. Also, the value of ${\gamma}$ was obtained from the light transfer characteristic of CdS thin film. The value of ${\gamma}$ for the 2,900 A-thick CdS thin film was 1 at 10 V, and it saturates with increasing the applied voltage.

Influence of Co incorporation on morphological, structural, and optical properties of ZnO nanorods synthesized by chemical bath deposition

  • Iwan Sugihartono;Novan Purwanto;Desy Mekarsari;Isnaeni;Markus Diantoro;Riser Fahdiran;Yoga Divayana;Anggara Budi Susila
    • Advances in materials Research
    • /
    • v.12 no.3
    • /
    • pp.179-192
    • /
    • 2023
  • We have studied the structural and optical properties of the non-doped and Co 0.08 at.%, Co 0.02 at.%, and Co 0.11 at.% doped ZnO nanorods (NRs) synthesized using the simple low-temperature chemical bath deposition (CBD) method at 95℃ for 2 hours. The scanning electron microscope (SEM) images confirmed the morphology of the ZnO NRs are affected by Co incorporation. As observed, the Co 0.08 at.% doped ZnO NRs have a larger dimension with an average diameter of 153.4 nm. According to the International Centre for Diffraction Data (ICDD) number #00-036-1451, the x-ray diffraction (XRD) pattern of non-doped and Co-doped ZnO NRs with the preferred orientation of ZnO NRs in the (002) plane possess polycrystalline hexagonal wurtzite structure with the space group P63mc. Optical absorbance indicates the Co 0.08 at.% doped ZnO NRs have stronger and blueshift bandgap energy (3.104 ev). The room temperature photoluminescence (PL) spectra of ZnO NRs exhibited excitonicrelates ultraviolet (UV) and defect-related green band (GB) emissions. By calculating the UV/GB intensity, the Co 0.08 at.% is the proper atomic percentage to have fewer intrinsic defects. We predict that Co-doped ZnO NRs induce a blueshift of near band edge (NBE) emission due to the Burstein-Moss effect. Meanwhile, the redshift of NBE emission is attributed to the modification of the lattice dimensions and exchange energy.

Electrical Properties of PbS-CuS Thin Films Prepared by Chemical Bath Deposition (CBD 방법에 의한 PbS-CuS 박막의 전기적 특성)

  • 정수태;조종래;조정호;정재훈;김강언;조상희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.5
    • /
    • pp.423-429
    • /
    • 2001
  • PbS, CuS and (Pb,Cu)S thin films were chemically deposited on glass from alkaline baths containing lead acetate, copper chloride, thiourea and triethanolamine. The deposition, optical, resistivity and thermal electric properties of these films were studied. PbS thin films showed a hexagonal structure and CuS thin films showed amorphous. The crystalline of (Pb,Cu)S thin films was obtained by heat treatment at 200$\^{C}$ and the deposition ratio of Pb to Cu showed 7:3. The energy gap of PbS, CuS and (Pb,Cu)S thin films were 1.7, 2.1 and 2.4 eV, respectively. Sheet resistance of PbS thin films was less affected on thermal annealing, but hose of (Pb,Cu)S and CuS thin films were more reduced about 3 orders of magnitude. All of those thin films indicated p type semiconductor in temperature ranging 30$\^{C}$ to 150$\^{C}$.

  • PDF