• Title/Summary/Keyword: Chatter Commencing Point

Search Result 4, Processing Time 0.016 seconds

Influence of Chucking Conditions on the Chatter Vibration Commencing Point in Turning (선삭에서 공작물 지지조건이 채터진동발생에 미치는 영향)

  • 신승춘
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.89-94
    • /
    • 1998
  • With increasing demands on automatic and high-capability manufacturing, the dynamic performance of machine tools becomes more and more important. In this paper, the correlation between dynamic compliance of the cutting system and the commencing point of chatter vibration in turning is checked by impulse excitation method and cutting tests for some cutting system. The correlation between chucking conditions of workpiece and the commencing point of chatter vibration is clarified, and it is proven that there is a mutual relations between them. Chatter vibration commenced at certain level of dynamic compliance of the cutting system regardless of the kind of the system. It shows the possibility of dynamic performance test of a lathe by means of impulse excitation method.

  • PDF

A Study on In-Process Detection of Chatter Vibration in a Turning Process (선삭가공에 있어서 채터진동의 인프로세스 검출에 관한 연구 (I))

  • Koo, Youn-Yoog;Chung, Eui-Sik;Nam, Gung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.3
    • /
    • pp.73-81
    • /
    • 1991
  • There have been many studies on chatter vibration in machining but there seems to be no regulations to decide the commencing point of chatter objectively. The development of an objective method which can estimate and detect chatter commencement is very much in need for automatic manufacturing systems, dynamic performance tests for machine tools, so on. In this study, therefore, the estimation and the in-process detection of chatter have been experi- mentally investigated for the turning process. As a result, the commencing point of chatter can be decided from the behavior of the maximum amplitude of the dynamic component of cutting force, where the maximum amplitude is suddenly increasing with the chatter commencement. Then the commencing point of chatter can be estimated practically by this method before the occurrence of excessive vibration. Also, it is possible to detect the occurence of chatter vibration through the in-process measurement, by monitoring the maximum amplitude of the dynamic component of cutting force.

  • PDF

A Study on In-Process Detection of Chatter Vibration in a Turning Process (선삭가공에 있어서 채터진동의 인프로세스 검출에 관한 연구(II))

  • Koo, Yeon-Yoog;Chung, Eui-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.3
    • /
    • pp.117-121
    • /
    • 1992
  • There have been many studies on chatter vibration in machining but there seems to be no regulations to decide the commencing point of chatter objectively. The development of an objective method which can estimate and detect chatter commencement is very much in need for automatic manufacturing systems, dynamic performance tests for machine tools, and so on. In this study, an approach for in-process monitoring and for deciding commencing point of the chatter vibration using the frequency band-energy method was proposed. From this method, in-process monitoring system for detection the chatter vibration was developed, and investigated its practical possibility. As a result, it is shown by experiments that the chatter vibtation can be detected accurately. Since the changing pattern of the signal energy in certain frequency band during chattering is seldom affected by the variation of cutting conditions, if adequate pre-measures are taken, this method can be widely used in most machining processes.

  • PDF

Diagnosis of Chatter Vibration using Frequency Domain in a Milling Process (밀링 공정시 주파수 영역을 이용한 채터 진동의 진단)

  • 김문기
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.12-18
    • /
    • 2001
  • Frequency domain has been used to detect chatter vibration and to decide commencing point of chatter for the milling processes. For this, power spectrum of accelerations signal is analyzed in the frequency domain. Also, the power spectrum and surface roughness are measured, compared, and evaluated according to the depth of cut by experimental works. As a results, it is known that the commencing point of chatter can be decided the behavior of the maximum amplitude of the power spectrum of acceleration signal and there is a correlation between the power spectrum of acceleration signal and the surface roughness. In conclusion, the power spectrum of acceleration signal can be used as a useful information for detec-tion and estimation of chatter vibration in machining.

  • PDF