• Title/Summary/Keyword: ChatGPT(Generative Pre-trained Transformer)

Search Result 9, Processing Time 0.022 seconds

A Study on the Understanding and Effective Use of Generative Artificial Intelligence

  • Ju Hyun Jeon
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.186-191
    • /
    • 2023
  • This study would investigate the generative AIs currently in service in the era of hyperscale AIs and explore measures for the use of generative AIs, focusing on 'ChatGPT,' which has received attention as a leader of generative AIs. Among the various generative AIs, this study selected ChatGPT, which has rich application cases to conduct research, investigation, and use. This study investigated the concept, learning principle, and features of ChatGPT, identified the algorithm of conversational AI as one of the specific cases and checked how it is used. In addition, by comparing various cases of the application of conversational AIs such as Google's Bard and MS's NewBing, this study sought efficient ways to utilize them through the collected cases and conducted research on the limitations of conversational AI and precautions for its use. If connected to city-related databases, it can provide information on city infrastructure, transportation systems, and public services, so residents can easily get the information they need. We want to apply this research to enrich the lives of our citizens.

Users' Attachment Styles and ChatGPT Interaction: Revealing Insights into User Experiences

  • I-Tsen Hsieh;Chang-Hoon Oh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.21-41
    • /
    • 2024
  • This study explores the relationship between users' attachment styles and their interactions with ChatGPT (Chat Generative Pre-trained Transformer), an advanced language model developed by OpenAI. As artificial intelligence (AI) becomes increasingly integrated into everyday life, it is essential to understand how individuals with different attachment styles engage with AI chatbots in order to build a better user experience that meets specific user needs and interacts with users in the most ideal way. Grounded in attachment theory from psychology, we are exploring the influence of attachment style on users' interaction with ChatGPT, bridging a significant gap in understanding human-AI interaction. Contrary to expectations, attachment styles did not have a significant impact on ChatGPT usage or reasons for engagement. Regardless of their attachment styles, hesitated to fully trust ChatGPT with critical information, emphasizing the need to address trust issues in AI systems. Additionally, this study uncovers complex patterns of attachment styles, demonstrating their influence on interaction patterns between users and ChatGPT. By focusing on the distinctive dynamics between users and ChatGPT, our aim is to uncover how attachment styles influence these interactions, guiding the development of AI chatbots for personalized user experiences. The introduction of the Perceived Partner Responsiveness Scale serves as a valuable tool to evaluate users' perceptions of ChatGPT's role, shedding light on the anthropomorphism of AI. This study contributes to the wider discussion on human-AI relationships, emphasizing the significance of incorporating emotional intelligence into AI systems for a user-centered future.

Research cases and considerations in the field of hydrosystems using ChatGPT (ChatGPT를 활용한 수자원시스템분야 문제해결사례 소개 및 고찰)

  • Do Guen Yoo;Chan Wook Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.98-98
    • /
    • 2023
  • ChatGPT(Chat과 Generative Pre-trained Transformer의 합성어)는 사용자와 주고받는 대화의 과정을 통해 질문에 답하도록 설계된 대형언어모델로, 지도학습과 강화학습을 모두 사용하여 세밀하게 조정된 인공지능 챗봇이다. ChatGPT는 주고받은 대화와 대화의 문맥을 기억할 수 있으며, 보고서나 실제로 작동하는 파이썬 코드를 비롯한 인간과 유사하게 상세하고 논리적인 글을 만들어 낼 수 있다고 알려져있다. 본 연구에서는 수자원시스템분야의 문제해결에 있어 ChatGPT의 적용가능성을 사례기반으로 확인하고, ChatGPT의 올바른 활용을 위해 필요한 사항에 대해 고찰하였다. 수자원시스템분야의 대표적인 연구주제인 상수관망시스템의 누수인지와 수리해석을 통한 문제해결에 ChatGPT를 활용하였다. 즉, 딥러닝 기반의 데이터분석을 활용한 누수인지와 오픈소스기반의 수리해석 모델을 활용한 관망시스템 적정 분석을 목표로 ChatGPT와 대화를 진행하고, ChatGPT에 의해 제안된 코드를 구동하여 결과를 분석하였다. ChatGPT가 제시한 코드의 구동결과를 사전에 연구자가 직접 구현한 코드구동 결과와 비교분석하였다. 분석결과 ChatGPT가 제시한 코드가 보다 더 간결할 수 있으며, 상대적으로 경쟁력 있는 결과를 도출하는 것을 확인하였다. 다만, 상대적으로 간결한 코드와 우수한 구동결과를 획득하기 위해서는 해당 도메인의 전문적 지식을 바탕으로 적절한 다수의 질문을 해야 하며, ChatGPT에 의해 작성된 코드의 의미를 명확히 해석하거나 비판적 분석을 하기 위해서는 전문가지식이 반드시 필요함을 알 수 있었다.

  • PDF

A Lecture Summarization Application Using STT (Speech-To-Text) and ChatGPT (STT(Speech-To-Text)와 ChatGPT 를 활용한 강의 요약 애플리케이션)

  • Jin-Woong Kim;Bo-Sung Geum;Tae-Kook Kim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.297-298
    • /
    • 2023
  • COVID-19 가 사실상 종식됨에 따라 대학 강의가 비대면 온라인 강의에서 대면 강의로 전환되었다. 온라인 강의에서는 다시 보기를 통한 복습이 가능했지만, 대면강의에서는 녹음을 통해서 이를 대체하고 있다. 하지만 다시 보기와 녹음본은 원하는 부분을 찾거나 내용을 요약하는데 있어서 시간이 오래 걸리고 불편하다. 본 논문에서는 강의 내용을 STT(Speech-to-Text) 기술을 활용하여 텍스트로 변환하고 ChatGPT(Chat-Generative Pre-trained Transformer)로 요약하는 애플리케이션을 제안한다.

Generative AI Jeonse Fraud Prevention System (생성형 인공지능 전세 사기 방지 시스템)

  • Yeon-Jae Oh
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.173-180
    • /
    • 2024
  • Along with its importance, the real estate market poses risks of various fraudulent activities. Recently, a surge in real estate-related scams, such as lease fraud, has caused great financial damage to many ordinary people. These problems are often caused by the complexity of real estate transactions and information imbalance. Therefore, there is an urgent need to secure reliability and improve transparency in the transaction process. In this paper, to solve this real estate fraud problem, we propose a chatbot system using digital technology and artificial intelligence, especially GPT (Generative Pre-Trained Transformer). This system serves to protect users from fraud by providing them with precautions and confirmations in the lease transaction process. In addition, GPT-based chatbots respond to questions from users in time, contributing to reducing uncertainty in the transaction process and increasing reliability.

The Role of GPT Models in Sentiment Analysis Tasks

  • Mashael M. Alsulami
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.12-20
    • /
    • 2024
  • Sentiment analysis has become a pivotal component in understanding public opinion, market trends, and user experiences across various domains. The advent of GPT (Generative Pre-trained Transformer) models has revolutionized the landscape of natural language processing, introducing a new dimension to sentiment analysis. This comprehensive roadmap delves into the transformative impact of GPT models on sentiment analysis tasks, contrasting them with conventional methodologies. With an increasing need for nuanced and context-aware sentiment analysis, this study explores how GPT models, known for their ability to understand and generate human-like text, outperform traditional methods in capturing subtleties of sentiment expression. We scrutinize various case studies and benchmarks, highlighting GPT models' prowess in handling context, sarcasm, and idiomatic expressions. This roadmap not only underscores the superior performance of GPT models but also discusses challenges and future directions in this dynamic field, offering valuable insights for researchers, practitioners, and AI enthusiasts. The in-depth analysis provided in this paper serves as a testament to the transformational potential of GPT models in the realm of sentiment analysis.

Comparative analysis of the digital circuit designing ability of ChatGPT (ChatGPT을 활용한 디지털회로 설계 능력에 대한 비교 분석)

  • Kihun Nam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.967-971
    • /
    • 2023
  • Recently, a variety of AI-based platform services are available, and one of them is ChatGPT that processes a large quantity of data in the natural language and generates an answer after self-learning. ChatGPT can perform various tasks including software programming in the IT sector. Particularly, it may help generate a simple program and correct errors using C Language, which is a major programming language. Accordingly, it is expected that ChatGPT is capable of effectively using Verilog HDL, which is a hardware language created in C Language. Verilog HDL synthesis, however, is to generate imperative sentences in a logical circuit form and thus it needs to be verified whether the products are executed properly. In this paper, we aim to select small-scale logical circuits for ease of experimentation and to verify the results of circuits generated by ChatGPT and human-designed circuits. As to experimental environments, Xilinx ISE 14.7 was used for module modeling, and the xc3s1000 FPGA chip was used for module embodiment. Comparative analysis was performed on the use area and processing time of FPGA to compare the performance of ChatGPT products and Verilog HDL products.

A Study on Fine-Tuning and Transfer Learning to Construct Binary Sentiment Classification Model in Korean Text (한글 텍스트 감정 이진 분류 모델 생성을 위한 미세 조정과 전이학습에 관한 연구)

  • JongSoo Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.15-30
    • /
    • 2023
  • Recently, generative models based on the Transformer architecture, such as ChatGPT, have been gaining significant attention. The Transformer architecture has been applied to various neural network models, including Google's BERT(Bidirectional Encoder Representations from Transformers) sentence generation model. In this paper, a method is proposed to create a text binary classification model for determining whether a comment on Korean movie review is positive or negative. To accomplish this, a pre-trained multilingual BERT sentence generation model is fine-tuned and transfer learned using a new Korean training dataset. To achieve this, a pre-trained BERT-Base model for multilingual sentence generation with 104 languages, 12 layers, 768 hidden, 12 attention heads, and 110M parameters is used. To change the pre-trained BERT-Base model into a text classification model, the input and output layers were fine-tuned, resulting in the creation of a new model with 178 million parameters. Using the fine-tuned model, with a maximum word count of 128, a batch size of 16, and 5 epochs, transfer learning is conducted with 10,000 training data and 5,000 testing data. A text sentiment binary classification model for Korean movie review with an accuracy of 0.9582, a loss of 0.1177, and an F1 score of 0.81 has been created. As a result of performing transfer learning with a dataset five times larger, a model with an accuracy of 0.9562, a loss of 0.1202, and an F1 score of 0.86 has been generated.

Updated Primer on Generative Artificial Intelligence and Large Language Models in Medical Imaging for Medical Professionals

  • Kiduk Kim;Kyungjin Cho;Ryoungwoo Jang;Sunggu Kyung;Soyoung Lee;Sungwon Ham;Edward Choi;Gil-Sun Hong;Namkug Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.3
    • /
    • pp.224-242
    • /
    • 2024
  • The emergence of Chat Generative Pre-trained Transformer (ChatGPT), a chatbot developed by OpenAI, has garnered interest in the application of generative artificial intelligence (AI) models in the medical field. This review summarizes different generative AI models and their potential applications in the field of medicine and explores the evolving landscape of Generative Adversarial Networks and diffusion models since the introduction of generative AI models. These models have made valuable contributions to the field of radiology. Furthermore, this review also explores the significance of synthetic data in addressing privacy concerns and augmenting data diversity and quality within the medical domain, in addition to emphasizing the role of inversion in the investigation of generative models and outlining an approach to replicate this process. We provide an overview of Large Language Models, such as GPTs and bidirectional encoder representations (BERTs), that focus on prominent representatives and discuss recent initiatives involving language-vision models in radiology, including innovative large language and vision assistant for biomedicine (LLaVa-Med), to illustrate their practical application. This comprehensive review offers insights into the wide-ranging applications of generative AI models in clinical research and emphasizes their transformative potential.