• Title/Summary/Keyword: Chassis dynamometer

Search Result 136, Processing Time 0.024 seconds

A Study on the Conversion Method of CO2 Emission Unit of Automobiles (자동차 CO2 배출가스 배출단위 변환방법 고찰)

  • Han, JO;Kim, HT
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.2
    • /
    • pp.68-73
    • /
    • 2019
  • We proposed a method to convert the CO2 emission data of vehicles collected from the chassis dynamometer test from distance unit to energy unit which generally measured from the engine dynamometer tests. In the future, if engine dynamometer tests are limited, it is expected to be applied as an alternative method to calculate CO2 emission based on energy unit through the chassis dynamometer test. At this moment, engine efficiency is required and the test mode average efficiency should be used to improve the accuracy, not the result derived from specific speed and load conditions. Also, this method was applied to foreign data and the results were within 0.2%. However, CO, NOx and THC which have very low emission characteristics except CO2, are limited by the method proposed in this study and need to be considered separatively.

Misfire Detection by Using the Crankshaft Speed Fluctuation(2) : Vehicle Test (크랭크축 각속도의 변동을 이용한 실화 판정(2) - 실차 실험)

  • 배상수;김세웅;임인건;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.90-99
    • /
    • 1996
  • To keep up with the regulation of OBD II(on board diagnostics II), many detection methods for engine misfire have been developed. Among them, the method of using the crankshaft speed fluctuation is the most noticeable in the point of view of lower cost and easier installation than any others. On the basis of the results obtained from the previous engine-dynamometer test, the integrating torque index (ITI) has been introduced. In this research, the instrumental and the interfacing systems to engine control unit(ECU) are developed for the vehicle test. Therefore, the vehicle and chassis-dynamometer test can be carried out in addition to the rough road test. From this test, the previousproposed method proved that it can be applied to the real vehicle.

  • PDF

Analysis of Conductivity Gas by using Automotive Dynamo-Meter (차량용 Dynamo-Meter를 이용한 도전성가스 분석연구)

  • 전영갑;서길수;노형우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.112-118
    • /
    • 2001
  • In this study the leakage current measurement method based on a porous ceramic is applied to check the conductive substance caused by the ionized particles. By using engine and chassis dynamometer and an experiment vehicle, in which the hydrocarbon sensor (HC sensor) was exposed to the exhaust gas to create the electrical signal, the HC sensor in the exhaust line checked the conductive ions in emission gas. Generally the output electrical signal of HC sensor is followed with amount of hydrocarbon in the experiments in cold start and operation. By combining the electrical signal, a measure of conductivity of exhaust gas with hydrocarbon can be provided by OBD (On Board Diagnosis) II and EMS (Engine Management System).

  • PDF

Fuel Economy Comparison according to Driving Mode Conditions of the Internal Combustion Engine Vehicles (내연기관 자동차의 주행모드 조건에 따른 연비 성능 비교)

  • Choi, Yongjun;Seo, Youngho
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.25-29
    • /
    • 2013
  • The purpose of this paper is to determine the fuel change and weight change impact on the fuel economy and emission characteristic of ICE (Internal Combustion Engine) vehicle. According to fuel type, fuel consumption and emission characteristics were measured and fuel used in this paper was gasoline, diesel, and LPG. Four vehicles with different weight were tested and the fuel economy were compared and analyzed by using scatter graph. Test was carried out using chassis dynamometer, CVS (Constant Volume Sampler), and emission measurement system. Diesel vehicle less emited $CO_2$ compared to gasoline and LPG. Even if same $CO_2$ between gasoline and LPG, there are difference fuel economy depending on carbon proportion of specific fuel. The heavier weight of vehicle, the worse of fuel economy and Better fuel economy performance on highway driving mode.

  • PDF

Fuel Economy and Emission Characteristics Evaluation by CVS-75 Mode Test and RDE(Real-road Driving Emissions) Test (CVS-75 모드 시험과 실도로 주행 시험을 통한 배출가스 및 연비 성능 평가)

  • Kang, Eunjeong;Um, Junsik;Seo, Youngho
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.67-70
    • /
    • 2014
  • Recently EU has been recognized that there is a difference of emission quantity between emission certification test mode and real-road driving test. Accordingly the European Commission is currently preparing to require real-road testing as part of the passenger car type-approval process in the EU. vehicle manufacturers from 2017 are expected to test new vehicles not only under laboratory conditions but also on the real-road, using PEMS equipment. Therefore the purpose of this study is to analyze the emission and Fuel Economy of CVS-75 mode test using chassis dynamometer and RDE test using PEMS equipment by PHEV passenger car.

A Study on the Analysis of Squeal Noise for Brake Design (저소음 브레이크 설계를 위한 스퀼 노이즈 해석기법 연구)

  • Kwon, Seong-Jin;Kim, Chan-Jung;Lee, Bong-Hyun;Na, Byung-Chul;Kim, Hyun-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.320-325
    • /
    • 2006
  • The phenomenon of squeal in disc brakes has been, and stin is, a problem for the automotive industry. Extensive research has been done in an attempt to understand the mechanisms that cause it and in developing design procedures to reduce it to make vehicles more comfortable. In this paper, the study on squeal noise of disc brake is performed using complex eigen-value analysis, The first part describes the chassis-dynamometer and the testing procedure, and second part explains how the analysis is performed and shows some of the results from typical squeal tests. Finally, to reduce squeal nose of disc brake is investigated by the effects of brake design parameter.

  • PDF

Study of Energy Consumption Efficiency of Electric Two-wheeled Vehicle by Change of Environment Variation (환경변화에 따른 전기이륜차의 에너지소비효율에 관한 연구)

  • Kil, Bum-Soo;Kim, Gang-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.56-63
    • /
    • 2012
  • Environment has become a main issue nowadays. People began to show big interest in "futuristic means of transportation", which is an efficient method in $CO_2$ emissions reduction and decreasing use of oil. Due to the noise and emissions of two-wheel vehicle of internal combustion engine, electric two-wheeled vehicles have been supplied in downtown. The electric two-wheeled vehicles use battery as power source. The performance of lithium-ion battery changes as the ambient temperature changes. In this paper, analysis of performance variance of electric two-wheeled vehicles influenced by the temperature using the chassis dynamometer and the environmental chamber was carried out.

Verification and Development of Simulation Model for Fuel Consumption Calculation between ICEV and PHEV (자동차 동력원별(ICEV, PHEV) 연비산출 모델개발 및 이의 검증)

  • Kim, J.W.;Park, J.M.;Kim, T.K.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.47-54
    • /
    • 2017
  • $CO_2$ emission regulation will be prescribed and main issue in automotive industry. Mostly, vehicle's fuel efficiency deeply related to $CO_2$ emission is regulated by qualified driving test cycle by using chassis dynamometer and exhaust gas analyser. But, real driving fuel consumption rate depends so much on the individual usage profile and where it is being driven: city traffic, road conditions. In this study, vehicle model of fuel consumption rate for ICEV and PHEV was developed through co-simulation with CRUISE model and Simulink based on driving control model. The simulation results of fuel consumption rate were analysed with on-road vehicle data and compared with its official level.

The Test Study on Driving Efficiency Improvement of Two-wheeled Electric Vehicle according to Regenerative Braking (전기 동력 이륜차의 회생제동에 따른 구동효율 향상에 관한 평가 연구)

  • Cho, Suyeon;Seo, Donghyun;Park, Junsung;Shin, Waegyeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.635-641
    • /
    • 2016
  • Regenerative braking performance of an electrically powered vehicle is closely related to driving distance per battery charge. An electric vehicle uses appropriate amounts of mechanical braking force and electromagnetic regenerative braking force to recover energy and increase driving efficiency. In particular, when it drives on a downhill road, energy recovery rate is maximized through regenerative braking during coasting based on the mass inertia of the vehicle. Since an electric two-wheeled vehicle covered in this paper is lighter than an electric four-wheeled vehicle, the improvement of its driving distance per battery charge through regenerative braking is different from an electric four-wheeled vehicle. This study compared the driving characteristics of an electric two-wheeled vehicle based on regenerative braking. Two driving test modes were simulated with a chassis dynamometer system. By analyzing the measurement of a chassis dynamometer, the driving characteristics of a two-wheel electric vehicle, such as driving efficiency, were analyzed. In addition, test results were reviewed to draw the limitations of conventional test methods for regenerative braking performance of an electric two-wheel vehicle.