• Title/Summary/Keyword: Charpy impact

Search Result 243, Processing Time 0.026 seconds

Effect of Calcium Carbonate Nanoparticle on the Toughening Mechanisms of Polypropylene Nanocomposite

  • Weon, Jong-Il;Choi, Kil-Yeong
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.290-290
    • /
    • 2006
  • The toughening mechanisms of polypropylene (PP) containing 9.2 vol % of calcium carbonate ($CaCO_{3}$) nanoparticles were investigated using optical microscopy and transmission electron microscopy. Double-notch four-point bending (DN-4PB) Charpy impact specimens were utilized to study the fracture mechanism(s) responsible for the observed toughening effect. A detailed investigation reveals that the $CaCO_{3}$ nanoparticles act as stress concentrators to initiate massive crazes, followed by shear banding in PP matrix. These toughening mechanisms are responsible for the observed improved impact strength.

  • PDF

Effect of Post Weld Heat Treatment on the Mechanical Properties of 2.25Cr-1Mo Steels Valves and Piping (용접후열처리가 2.25Cr-1Mo 강 밸브 및 배관재 물성에 미치는 영향)

  • Kim, Hongdeok;Lee, Yoseob;Lee, Jaegon;Lee, Kyoungsoo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.33-38
    • /
    • 2015
  • The effects of post weld heat treatment(PWHT) on the mechanical properties of 2.25Cr-1Mo steels were investigated. As the PWHT temperature or holding time increased, the strength of low alloy steels progressively decreased due to softening process. After the conventional PWHT, the strength was larger than the minimum value of materials specification. The Charpy impact energy was hardly affected by the conventional PWHT. The trend of mechanical properties was analyzed in terms of tempering parameter. Most materials replaced from a power plant met the requirements of materials specification except for one heat. Same heat of materials with low impact energy were attributed to the voids formed during casting process.

Mechanical Properties of Spheroidal Graphite Cast Iron with Duplex Matrix. (2상혼합조직(相混合組織)을 가진 구상흑연주철(球狀黑鉛鑄鐵)의 기계적성질(機械的性質)에 관한 연구(硏究))

  • Yoon, Eui-Pak;Lee, Young-Ho
    • Journal of Korea Foundry Society
    • /
    • v.2 no.2
    • /
    • pp.2-9
    • /
    • 1982
  • This paper is concerned with the improvement of impact and tensile Properties of spheroidal graphite cast iron of the following duplex matricess which were heat treated in the eutectic transformation temperature range (that is, $({\alpha}+{\gamma})$ coexisting range) ; ferrite-martensite, ferrite-bainite and ferrite-pearlite. The absorbed energy and maximum load was measured by recording the load-deflection curve with instrumented Charpy impact testing machine in the temperature range from $+100^{\circ}C$ to $-196^{\circ}C$. It was found the ferrite-bainite duplex matrix showed the highest toughness among the above matrices in the room temperature and the low temperature range. Comparison of this matrix to ferrite-pearlite matrix(that is, as cast) showed a lowering of $27^{\circ}C$ in the nil-ductility transition temperature (NDT) and a lowering of $40^{\circ}C$ in the ductile-brittle transition temperature (TrE), Which seems to result from the finner dimple pattern observed using miorofractography.

  • PDF

Impact Properties and Fractography of Structural Materials for LNG Tank at Cryogenic Temperatures (LNG 저장탱크용 재료의 극저온 충격특성과 파면해석)

  • Shin Hyung-Seop;Lee Hae-Moo;Shin Ju-Yeong;Park Jong-Seo
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.99-106
    • /
    • 1998
  • In order to investigate the impact properties of structural materials for LNG tank, instrumented Charpy impact tests were carried out at cryogenic temperatures. $9\%$ Ni steel showed a superior fracture resistance because of less degradation in toughness until 77 K. From the load-deflection curve obtained by an instrumented methods it was found that with the decrease of temperature from 173 K to 77 K, the peak load in the curve increased, but the total absorbed energy decreased. In addition, the energy absorbed during the crack growth was larger than one absorbed in the process of crack initiation. In SUS304L material, the energy absorbed in the process of the crack initiation was relatively large, but the energy absorbed in the process of crack growth was small, the behavior of absorbed energy was well agreed with the observations of the fracture surface which showed a relatively smooth fracture surface. The absorbed Charpy impact energy in the case of A5083 alloy was lower as compared with other steels, and some cracks were observed along the crack propagation direction at the fracture surface of 77 K.

  • PDF

A Study on the 43$0^{\circ}C$ Degradation Behavior of Cast Stainless Steel(CF8M)(I);Evaluation of Degradation mechanism, Static and Fatigue Strength (주조 스테인리스강 CF8M의 43$0^{\circ}C$ 열화거동에 관한 연구(I);열화기구.정적 및 피로강도평가)

  • Gwon, Jae-Do;Park, Jung-Cheol;Lee, Yong-Seon;Lee, U-Ho;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1910-1916
    • /
    • 2000
  • The five classes of the thermally aged CF8M specimen are prepared using an artificially accelerated aging method. Namely, after the specimens are held for 100, 300, 900, 1800, and 3600hrs at 430$^{\circ}C$ respectively, the specimens are water-cooled to room temperature. The impact energy variations are measures for both the aged and virgin specimens through the Charpy impact tests in addition to the microstructure observation, tensile, hardness and fatigue crack growth tests. From the present investigation the following results are obtained : 1) The difference among the thermally degraded specimens can be distinguished through their microstructures, 2) Hardness and tensile strength are increased to 300hrs, degradation specimen, while elongation and reduction area are decreased to 3600hrs degradation specimen, and impact energy is decreased to 1800hrs degradation specimen, 3) The FCG rates for thermally degraded specimens are larger than that of the virgin specimen.

Effect of Pearlite Interlamellar Spacing on Impact Toughness and Ductile-Brittle Transition Temperature of Hypoeutectoid Steels (아공석강의 충격인성 및 연성-취성 천이온도에 미치는 펄라이트 층상간격의 영향)

  • Lee, Sang-In;Kang, Jun-Young;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.417-422
    • /
    • 2015
  • In this study, low-carbon hypoeutectoid steels with different ferrite-pearlite microstructures were fabricated by varying transformation temperature. The microstructural factors such as pearlite fraction and interlamellar spacing, and cementite thickness were quantitatively measured and then Charpy impact tests conducted on the specimens in order to investigate the correlation of the microstructural factors with impact toughness and ductile-brittle transition temperature. The microstructural analysis results showed that the pearlite interlamellar spacing and cementite thickness decreases while the pearlite fraction increases as the transformation temperature decreases. Although the specimens with higher pearlite fractions have low absorbed energy, on the other hand, the absorbed energy is higher in room temperature than in low temperature. The upper-shelf energy slightly increases with decreasing the pearlite interlamellar spacing. However, the ductile-brittle transition temperature is hardly affected by the pearlite interlamellar spacing because there is an optimum interlamellar spacing dependent on lamellar ferrite and cementite thickness and because the increase in pearlite fraction and the decrease in interlamellar spacing with decreasing transformation temperature have a contradictory role on absorbed energy.

The Study on the Effect of Alloying Elements(V,Ti) and Heat Treatment on the Mechanical Properties in Chromium Cast Iron (크롬주철의 기계적 성질에 미치는 합금원소(V,Ti)와 열처리의 영향에 관한 연구)

  • Kim, Sug-Won;Kim, Dong-Keon;Lee, Eui-Kwoon;Jang, Ho-Yeal
    • Journal of Korea Foundry Society
    • /
    • v.12 no.6
    • /
    • pp.450-457
    • /
    • 1992
  • The study aims to investigate the influence of alloying elements(V,Ti) and heat treatment on the mechanical properties in hypo-eutectic chromium cast iron. Before heat treatment, all of the specimen were fully annealed(950$^{\circ}C{\times}5Hr$) to homogenize their structures. The influence of heat treatment and alloying elements(V,Ti) on hardness, retained austenite volume, and charpy impact energy as well as tensile strength of the specimen was tested systematically. Retained austenite decreased with the increase of V and Ti, but incresed with the increase of number of cycles. The impact energy decreased, and hardness and tensile strength increased with the increase of alloying elements (V,Ti) and the decrease of the number of cycles. The hardness and tensile strength increased, but impact energy decreased with the increase of V and Ti elements and the temperature of destabillization heat treatment. After the destabillization heat treatment at the same temperature, the impact energy is increased, while hardness and tensile strength decreased as the increase of tempering temperature. Retained austenite increased with increase of destabilizatoin heat treatment temperature, while decrease with the increase of tempering temperature.

  • PDF

Effect of Austenitizing and Quenching·Tempering Temperatures on Tensile and Impact Properties of AISI 51B20 (AISI 51B20강의 인장 및 충격특성에 미치는 오스테나이트화 온도와 퀜칭·템퍼링 온도의 영향)

  • Kim, Heon-Joo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.6
    • /
    • pp.327-337
    • /
    • 2011
  • Effects of microstructural change, tensile properties and impact property according to the change of austenitizing temperature and tempering temperature of AISI 51B20 steel were examined. Regardless of austenite grain size, lath martensite with needle and packet shapes was found at tempering temperature of $300^{\circ}C{\sim}400^{\circ}C$. The needles of lath martensite changed to parallel packet at tempering temperature of $450^{\circ}C{\sim}600^{\circ}C$. As tempering temperature increased, tensile strength, yield strength and hardness decreased, while elongation, ratio of reduction area and Charpy impact energy increased. Grain size increased when quenching temperature was $930^{\circ}C$. Grain size had prominent effect on the mechanical properties of AISI 51B20 steel. Ratio of tensile strength/yield strength and yield strength autenitized at $880^{\circ}C$ followed by tempering at $350^{\circ}C{\sim}450^{\circ}C$ showed higher values than that of autenization at $930^{\circ}C$ due to fine grain size.

Effects of C on the Strength and Toughness of FCAW Weld Metal of YS 460 MPa Steels for Ship and Offshore Structures (선박·해양 구조물용 YS 460MPa 강재 FCAW 용접금속의 강도와 인성에 미치는 C의 영향)

  • Jeong, Sang-Hoon;Eom, Jeong-Ho;Choi, Han-Geul;Jeong, Byung-Ho;Hur, Sung-Hwa;Kang, Chang-Yong
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.29-34
    • /
    • 2014
  • This paper has an purpose to study the effect of C on the toughness of YS 460 MPa FCAW weld metal. These effects were evaluated by charpy impact and CTOD test about 4 FCAW weld metal containing various C and Si content in relation to microstructure. Increase of C content was helpful to increase AF volume fraction and reduce PF(G) and FS volume fraction by increasing super cooling rate for ferrite transformation. Also, Increase of C content up to 0.045wt% made the strength and impact toughness higher by increasing AF volume fraction. The weld metal containing higher C content indicated higher CTOD value. It is because the volume fraction of PF(G) and FS, can play a role as crack initiation site, was reduced. Effect of C on the strength and elongation of weld metal was higher with an increase of Si contents.

Effect of TiO2 Particle Size and Content on the Mechanical Properties of TiO2/Epoxy Composites (TiO2 나노입자의 크기와 함량이 TiO2/Epoxy 복합재료의 기계적 물성에 미치는 영향)

  • Kim, Bu-An;Moon, Chang-Kwon
    • Journal of Power System Engineering
    • /
    • v.21 no.1
    • /
    • pp.11-17
    • /
    • 2017
  • This study is about the mechanical properties of epoxy composite reinforced with nano $TiO_2$ particle. Tensile strength, fracture toughness, vicker's hardness and Izod Impact test were carried out to investigate the effect of particle size and content of $TiO_2$ on the mechanical properties of $TiO_2$/epoxy composites. The results showed that the strength of the $TiO_2$/epoxy composites were higher than that of the pure epoxy. The best improvement of tensile strength was achieved in case of the particle size was 21 nanometer and the content was 3 weight percent. However, the Izod Impact value and the Vicker's hardness of $TiO_2$/epoxy composites showed no clear tendency.