• Title/Summary/Keyword: Charging-discharging test

Search Result 75, Processing Time 0.034 seconds

AC Regeneratable Battery Charging and Discharging Test System (AC 회생이 가능한 배터리 충·방전 테스트 시스템)

  • Kim, Jun-Gu;Youn, Sun-Jae;Kim, Jae-Hyung;Won, Chung-Yuen;Na, Jong-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.99-106
    • /
    • 2012
  • In this paper, 15[kW] AC regenerative system for battery charging and discharging test is proposed. The regenerative system is able to regenerate surplus energy to the grid in discharging mode, and the inverter of the system can be operated as a converter to compensate scarce energy in charging mode. In case of the conventional DC charging and discharging system, the regenerative energy is consumed by a resistor. However, as the proposed system regenerates the surplus energy to the grid through using DC-AC inverter, the energy saving effect can be achieved. In this paper, 15[kW] battery charging and discharging system is developed, and the validity of the system is verified through simulation and experimental results.

A Study on the Charging and Diagnosis System of xEV Reusable Waste Battery

  • Park, Sung-Jun;Kim, Chun-Sung;Park, Seong-Mi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_1
    • /
    • pp.669-681
    • /
    • 2021
  • As the supply of xEV in Korea is rapidly increasing, the amount of waste batteries is expected to increase rapidly, but the current recycling system for waste xEV batteries is very insufficient. In order to properly utilize the xEV reusable battery module, it is essential to classify it into a type that has similar discharge characteristics to the current state of health(SOH), which is the discharge capacity of the battery. This paper proposes a system that can minimize the exchange of energy with the KEPCO system by using the charging/discharging method by circulating power between batteries in order to minimize the power consumption when charging and discharging waste batteries. In the proposed system, a function to measure parameters during the charging/discharging test of the waste battery was implemented to build a customized big date for the test waste battery. In addition, the dynamic characteristics of the proposed circuit were analyzed using PSIM, which is useful for power electronics analysis, and the validity of the proposed circuit was verified through experiments.

Development of High Voltage and High Energy Density Capacitor for Pulsed Power Application (펄스파워용 고전압 고에너지밀도 커패시터 개발)

  • 이병윤;정진교;이우영;박경엽;이수휘;김영광
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.5
    • /
    • pp.203-210
    • /
    • 2003
  • This paper describes high voltage and high energy density capacitor developed for pulsed power applications. The rated voltage of the developed capacitor is DC 22 [kV], the capacitance is 206 [$\mu$F] and the energy density is about 0.7 [kJ/kg]. Polypropylene film and kraft paper were used as the dielectrics. The ratio of the thickness of each dielectric material which consists of the composite dielectric structure, stacking factor and the termination method were determined by the charging and discharging tests on model capacitors. In terms of energy density, the developed capacitor has higher energy density compared with the products of foreign leading companies. In addition, it has been proved that the life expectancy can be more over 2000 shots through the charging and discharging test. The voltage reversal factor was 20%. This capacitor can be used as numerous discharge applications such as military, medical, industrial fields.

Charging-Discharging Behavior and Performance of AGM Lead Acid Battery/EDLC Module for x-HEV (x-HEV용 AGM 연축전지/EDLC 통합모듈의 성능 및 충방전 거동)

  • Kim, Sung Joon;Seo, Sung Won;An, Sin Young;Kim, Bong-Gu;Son, Jeong Hun;Jung, Yeon Gil
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.84-91
    • /
    • 2021
  • To cope with automobile exhaust gas regulations, ISG and charging control systems are applied to HEV vehicles for the purpose of improving fuel economy. These systems require quick charge-discharge performance of high current. Therefore, a Module of the AGM battery with high energy density and EDLC(Electric Double Layer Capacitor) with high power density are constructed to study the charging and discharging behavior. In CCA, which evaluates the starting performance at -18 ℃ & 30 ℃ with high current, EDLC contributed for about 8 sec at the beginning. At 0 ℃ CA (Charge Acceptance), the initial Charging current of the AGM/EDLC Module, is twice that of the AGM lead acid battery. To play the role of EDLC during high-current rapid charging and discharging, the condition of the AGM lead-acid battery is optimally maintained. As a result of a Standard of Battery Association of Japan (SBA) S0101 test, the service life of the Module of the AGM Lead Acid Battery/EDLC is found to improve by 2 times compared to that of the AGM Lead Acid Battery.

Experimental Characteristics Examination of a Hybrid-Type Supercapacitor (하이브리드형 슈퍼커패시터의 실험적 특성 규명)

  • Jeong, Kyuwon;Shin, Jaeyoul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.4
    • /
    • pp.307-311
    • /
    • 2016
  • Several types of supercapacitors have been developed for energy storage systems. Among them, the hybrid type has advantages such as a large capacitance per weight compared with the electric double-layer capacitator type. In this study, constant current charging and discharging tests were conducted for recently developed hybrid-type supercapacitors. Based on the experimental results, the capacitance and equivalent series resistance were obtained. The capacitance was larger than the designed capacitance at a low current but became small at a high current. In addition, the capacitance depended on the cell voltage. These results can be used to design an energy storage system.

Characteristics of Lithium-ion(Li-ion) Batteries according to Charging and Discharging by Scenario (시나리오별 충방전에 따른 리튬이온(Li-ion) 배터리 특성)

  • Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.171-176
    • /
    • 2023
  • In the modern society of the 21st century, portable electronic products using secondary batteries are continuously becoming lightweight and miniaturized. And along with this trend, we are active in the era of the Fourth Industrial Revolution, where we collect and share information in our daily lives using wearable electronic devices. Therefore, the role of secondary batteries that can be recharged while using small home appliances and digital devices is increasingly important. Along with this increase, secondary battery performance tests require various test methods such as characteristics, lifespan, failure diagnosis, and recycling. In addition, the construction of a battery test system to ensure the safety and proper functioning of the battery, along with guidelines and correct basic knowledge are being considered. Therefore, in this paper, we will examine the characteristics of the secondary battery Li-ion battery according to the charging and discharging scenarios directly connected to the performance of the battery.

Test Facility of Battery Simulator for Dynamic Characteristics and Safety Evaluation in Lithium-ion Battery (리튬이온 배터리 동특성 및 안전성 평가를 위한 배터리 시뮬레이터 시험설비)

  • Sungin Jeong;Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.133-138
    • /
    • 2024
  • Lithium-ion batteries are used in many fields due to their high energy density, fast charging conditions, and long cycle life. However, overcharging, over-discharging, physical damage, and use of lithium-ion batteries at high temperatures can reduce battery life and cause damage to people due to fire or explosion due to damage to the protection circuit. In order to reduce the risk of these batteries and improve battery performance, the characteristics of the charging and discharging process must be analyzed and understood. Therefore, in this paper, we analyze the charging and discharging characteristics of lithium-ion batteries using a battery charger and discharger and simulator to reduce the risk of loss of life due to overcharge and overdischarge, as well as casualties from fire and explosion due to damage to the protection circuit.

Rapid Charger for 48V Lead-acid Battery (48V용 납축전지 급속 충전기)

  • Ahn, S.H.;Jang, S.R.;Ryoo, H.J.;Mo, S.C.;Oh, S.W.;Park, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.945_946
    • /
    • 2009
  • This paper describes the development of the rapid battery charger for lead-acid battery. Due to heat which is caused by increased internal resistance during charging, it is difficult to increase charging current for the lead-acid battery. In this paper, the rapid charging algorithm which apply short discharging pulse current during charging procedure is developed and it makes the ion layer, which is generated during charging time, disappeared into electrolyte. The prototype battery charger based on resonant converter is developed for 48V battery charger and test procedure is introduced.

  • PDF

Role and Operation Algorithm of a Battery Management Systems (EV용 BMS의 역할과 운전 알고리즘)

  • 이재문;최욱돈;이종필;이종찬
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.6
    • /
    • pp.467-473
    • /
    • 2001
  • BMS(Battery Management System) in EV system(Electric Vehicle) senses voltage, temperature and the charging or discharging current of batteries. The main roles of BMS are to estimate SOC(State OF Charge) of batteries and optimally monitor them according to the operation state of EV system which is motoring mode or charging mode. In this paper, we propose the proper algorithm about BMS's roles and operation which is suitable to EV system and illustrate validity and effectiveness through the experiments which were performed in the condition of Vehicle road test and charging test.

  • PDF

Electrical Characteristics of Cathode Li($Mn_{1-\delta}$$M_{\delta}$)$_2$$O_4$ Substituted by Transition Metals in Li-Ion Secondary Batteries (전이금속 치환 리튬이온 이차전지 정극 Li($Mn_{1-\delta}$$M_{\delta}$)$_2$$O_4$의 전기적 특성)

  • 박재홍;김정식;유광수
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.466-472
    • /
    • 2000
  • As cathode materials of LiMn2O4-based lithium-ion secondary batteries, Li(Mn1-$\delta$M$\delta$)2O4 (M=Ni and Co, $\delta$=0, 0.05, 0.1 and 0.2) materials which Co and Ni are substituted for Mn, were syntehsized by the solid state reaction at 80$0^{\circ}C$ for 48 hours. No second phases were formed in Li(Mn1-$\delta$M$\delta$)2O4 system with substitution of Co. However, substitution of Ni caued to form a second phase of NiO when its composition exceeded over 0.2 of $\delta$ in Li(Mn1-$\delta$M$\delta$)2O4. As the results of charging-discharging test, the maximum capacity of Li(Mn1-$\delta$M$\delta$)2O4 appeared in $\delta$=0.1 for both Co and Ni. Also, Li(Mn1-$\delta$M$\delta$)2O4 electrode showed higher capacity and better cycle performance than LiMn2O4.

  • PDF