• Title/Summary/Keyword: Charging stations

Search Result 82, Processing Time 0.023 seconds

A Study on Damage Effect from Major Accident of LPG Charging Facility - A case study of an LPG Charging and Automotive Outlet - (LPG 충전소 중대사고의 피해효과에 관한 연구 - 부천 LPG충전소 사고 사례를 중심으로 -)

  • Roh, Sam-Kew;Kim, Tae-Hwan;Ham, Eun-Gu;Hong, Chang-Moon
    • Korean Security Journal
    • /
    • no.2
    • /
    • pp.83-98
    • /
    • 1999
  • The LPG station's explosion at Bucheon city was a major accident which with rare frequency of occurrence but large damage effect. Therefore, to prevent similar accident in the future from LPG chargings stations which located at inner urban area, it needs to identify the damage effects of such facilities by comparing theoretically quantities risks-PHAST. The BLEVE effects from the accident showed similar level in case of heat flux, however, the over pressure level reflected at reduced distance. The structure damage to the nearby area showed comparatively large reduction of concrete strength and shape changes through by heat effect while the overpressure effect was small.

  • PDF

The Factor Analysis for Acceptance on Hydrogen Refueling Station Using Structure Equation Model (구조방정식 모델을 이용한 수소충전소 수용에 미치는 요인분석)

  • Lee, Mi Jeong;Baek, Jong-Bae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.356-362
    • /
    • 2022
  • Research related to hydrogen technology is being actively conducted around the world. Korea is also making great efforts to develop technology to leap forward as a hydrogen economy powerhouse. In particular, the world's No. 1 hydrogen vehicle penetration rate is proof of this. However, the construction of hydrogen refueling stations is being delayed. The biggest delay factor is the public opposition. As such, policies without public support cannot be successfully implemented and are not sustainable. Therefore, this study intends to analyze the factors affecting the acceptability of hydrogen refueling stations in favor of and against them. As a research method, the basic factors affecting acceptability were identified by reviewing previous studies, and a questionnaire was designed and investigated based on the established factors. The validity and reliability of the questionnaire were verified, and the hypothesis was verified through correlation analysis. And, using structural equation modeling, a factor model was developed on the acceptability of hydrogen refueling stations. As a result of the study, acceptability defined private acceptability and public acceptability. In the case of private acceptability, it was confirmed that the higher the attitude toward the environment, the higher the level of knowledge about the hydrogen charging station, and the lower the degree of feeling the risk of the hydrogen charging station, the higher the acceptability. In the case of public acceptability, it was confirmed that the higher the benefit, the better the attitude toward the environment, and the lower the risk-taking characteristics of the individual, the higher the acceptability. Therefore, in this study, based on the potential factors verified in previous studies, the main factors affecting the acceptance on hydrogen refueling stations were identified. And the acceptance model was developed using structural equation modeling. This study is expected to provide basic data to seek ways to improve the acceptance of public when implementing national policies such as hydrogen refueling stations, and to be used analysis data for scientific communication.

Hydraulic Compressor Safety Test for Hydrogen Stations (수소충전소용 유압식 압축기 안전성 시험에 관한 연구)

  • Seong, Hye-Jin;Hwang, Bom-Chan;Choi, Sung-Joon;Kim, Young-Kyu;Cho, Sung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.8-15
    • /
    • 2020
  • The government has announced its Hydrogen Economy Roadmap to strengthen global competitiveness on the hydrogen economy by focusing on hydrogen fuel cell electric vehicles and fuel cells. In this regard, the interest on the economics and safety of the infrastructure of hydrogen stations has also increased. In this study, a test bed similar to an actual hydrogen charging facility was built, and a prototype of a piston-type compressor was modeled. In this model, the piston was hydraulically compressed to progressively test leakage, leakage rate, and durability and to check for any malfunction. Moreover, the leakage rate, cylinder leak performance, and compressor operation durability were evaluated for safety; it was confirmed that there were no abnormalities. Nevertheless, an investigation of the long-term use and operating pressure of the compressor is necessary to verify the safety of developing a100-MPa domestic compressor in the future.

A Study on Damage Assessment for Fuel Cell Facilities in Gas Stations (주유소 내 연료전지설비에 대한 사고피해예측 연구)

  • Sung Yoon Lim;Jang Choon Lee;Jae Hoon Lee;Seung Ho Choi
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.1
    • /
    • pp.71-80
    • /
    • 2023
  • Fuel cells are low-carbon power sources that can expand distributed energy system and electric vehicle charging infrastructure when installing fuel cells in gas stations. In order to ensure safety for fuel cells in gas stations, quantitative risk assessments were conducted after deriving accident scenarios based on accident data of domestic and foreign gas stations and fuel cells. It calculates the expected extent of damage from fire and explosion that can occur in reality, not the worst accident scenario, and analyzes the damage impact. The separation distance of more than 9.0 m from a dispenser, 15.5 m from a car under refueling, 4.1 m from the ventilation pipe, 1.1 m from the gas adjustment device prevent the severe damage caused by the expected accident. This study result can be used to deploy fuel cells in gas stations and establish safety measures.

Stakeholder Oriented Economical Efficiency Analysis on the Scenario to Implement Smart Transportation Services (지능형 운송 서비스 구축 시나리오에 대한 이해관계자 중심 경제성 분석)

  • Shin, KwangSup;Moon, Yongma;Hur, Wonchang;Kim, Woo Je
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • This research proposed a new method to evaluate the objective validity to launch smart transportation services that various stakeholders are complicatedly inter-connected. First of all, we have designed the fundamental business model to form the smart transportation services and defined the stakeholders taking part in the services. Also, the criteria to evaluate the economical validity has been proposed based on the relationship among stakeholders. Especially, in the case EV drivers and charging service providers, the economical validity depends on the scale of spreading. Therefore, we have compared the two extreme scenarios, the poor and stable level of EV spreading. According to the result, it may be said that EV drivers and charging service providers cannot be guaranteed the economical validity due to the burden of initial investment. On the contrary to this, suppliers of EV and charging gears may secure more than a certain level of profit. In addition, the government may have great profit due to reducing the CO2 emission and cost for importing energy sources. Therefore, it is needed to enhance the level of supporting EV drivers and charging service providers at the first stage. Also, the impact of the ratio of EV and charging service stations on the economical validity of smart transportation should be further investigated.

A New Voltage Balancer With Bidirectional DC-DC Converter Function for EV Charging Station (전기자동차 충전소용 양방향 DC-DC 컨버터 기능을 갖는 전압 밸런서)

  • Nam, Hyun-Taek;Kim, Sanghun;Cha, Honnyong;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.313-320
    • /
    • 2018
  • This study proposes a new voltage balancer with bidirectional DC-DC converter function. The proposed balancer can serve as a voltage balancer and a bidirectional DC-DC converter. Thus, the balancer can be applied to battery management systems or fast chargers in electric vehicles (EVs) charging stations while balancing bipolar DC bus voltages. The proposed system has unlimited voltage balancing range unlike the conventional voltage balancing control using a three-level DC-DC converter. A comparison of the voltage balancing range between the proposed and conventional scheme is explored to confirm this superiority. Simulation and experimental results are provided to validate the effectiveness of the proposed system.

Parametric Study of Shape Design for Strength Performance Enhancement of Bellows in Hydrogen Compressor-embedded Refueling Tank (수소 압축기 내장형 충전 탱크의 벨로우즈 강도 성능 향상을 위한 형상 설계 파라미터 연구)

  • Ji-Hyoung Kim;Chang-Yong Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.39-46
    • /
    • 2024
  • As the development of hydrogen vehicles has accelerated in recent years, it is necessary to develop a storage tank for hydrogen fueling stations capable of high-pressure charging, and for this purpose, a new system with a compressor-embedded refueling tank is required. In this study, the parametric study of shape design based on strength performance evaluation was carried out to find the optimal shape design of bellows, the core component of compressor-embedded refueling tank for a newly developed hydrogen refueling station capable of high-pressure charging above 1,000 bar. The design factors for parametric study were contour shape and radius of bellows, and the performance factors were the maximum stress and the gap distance in the contact direction. In the shape design of the compressor bellows for hydrogen refueling station considered in this study, it was found that adjusting the contour radius is an appropriate design method to improve the compression performance and structural safety.

A Study on the Selection of Hydrogen Refueling Station Locations within Military Bases Considering Minimum Safe Distances between Adjacent Buildings (인접 건물 간 최소 안전거리를 고려한 군부대 내 수소충전소 위치선정 연구)

  • Dong-Yeon Kim;Hyuk-Jin Kwon
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.171-180
    • /
    • 2023
  • Hydrogen energy technology is gaining importance in the era of the Fourth Industrial Revolution, offering military advantages when applied to military vehicles due to its characteristics such as reduced greenhouse gas emissions, noise, and low vibration. Korea's military has initiated the Army Tiger 4.0 plan, focusing on hydrogen application, downsizing, and AI-based smart features. The Ministry of National Defense plans to collaborate with the Ministry of Environment to expand hydrogen charging stations nationwide, anticipating increased deployment of military hydrogen vehicles. However, considering the Jet Fire and VCE(Vapor Cloud Explosion) nature of hydrogen, ensuring safety during installation is crucial. Current military guidelines specify a minimum safety distance of 2m from adjacent buildings for charging stations. Scientific methods have been employed to quantitatively assess the accident damage range of hydrogen, proposing a minimum safety distance beyond the affected area.

A Study on Site to Build Hydrogen Multi Energy Filling Station in Domestic LPG Station (국내 LPG 충전소 내 수소 융·복합충전소 구축 가능 부지 연구)

  • PARK, JIWON;HUH, YUNSIL;KANG, SEUNGKYU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.642-648
    • /
    • 2017
  • The use of fossil is causing enviromental all over the world. So hydrogen energy is attracting attention as one of the alternative. The government announced that 30% of the air pollution is because of the Internal Combustion Engine Vehicle. In addition, they plans to reduce Internal Combustion Engine Vehicles by 2030 and increase (electric vehicles, EV) or (fuel cell vehicle, FCV). The FCV is evaluated as a next-generation green car because it has a long driving distance and short charging time. However, the hydrogen industry is not able to expand due to the lack of refueling infrastrucutre. This paper predicts the site of hydrogen refueling stations for the expansion of the hydrogen industry and proposes a method to supply hydrogen multi energy filling stations.

Experiments of RTK based Precision Landing for Rotary Wing Drone (RTK를 이용한 회전익 드론 정밀 착륙 실험)

  • Young-Kyu Kim;Jin-Woung Jang;Jong-Hee Lee;Jong-Ho Yoo;Seungh Hyun Paik;Dae-Nyeon Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.2
    • /
    • pp.75-80
    • /
    • 2023
  • Unmanned drone stations for automatic charging have been developed in order to overcome the flying time limitation of rotary wing drones. Since the drone stations is an unmanned operating system, each of the drones will be required to have a high degree of landing accuracy. Drone precision landing has been mainly studied depended on image processing technologies, but the image processing systems make several problems, such as the mission weight, the drone cost, and the development complexity increases, and the flight time decrease. Thus, this paper researched accuracy of precision landing based on RTK (real time kinetics) for rotary wing drones. For the experiments of RTK based precision landing, a drone repeatedly performed three missions. The survey accuracies of the RTK about missions respectively were set as 0.3, 0.2, and 0.1 meters. Each mission has one take-off point, two way-points and one landing-point, and was repeated ten times. The experiment results revealed landing error distance means of around 0.258, 0.12 and 0.057 meters on each of RTK setting.