• Title/Summary/Keyword: Charging scenarios

Search Result 33, Processing Time 0.032 seconds

Analysis of Construction Plans of Rapid Charging Infrastructures based on Gas Stations in Rural Areas to Propagate Electric Vehicles (전기자동차 보급을 위한 농촌지역의 주유소 기반 급속 충전인프라 구축 방안 분석)

  • Kim, Solhee;Kim, Taegon;Suh, Kyo
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.1
    • /
    • pp.19-28
    • /
    • 2015
  • As environmental concerns including climate change drive the strong regulations for car exhaust emissions, electric vehicles attract the public eye. The purpose of this study is to identify rural areas vulnerable for charging infrastructures based on the spatial distributions of the current gas stations and provide the target dissemination rates for promoting electric cars. In addition, we develop various scenarios for finding optimal way to expand the charging infrastructures through the administrative districts data including 11,677 gas stations, the number of whole national gas stations. Gas stations for charging infrastructures are randomly selected using the Monte Carlo Simulation (MCS) method. Evaluation criteria for vulnerability assessment include five considering the characteristic of rural areas. The optimal penetration rate is determined to 21% in rural areas considering dissemination efficiency. To reduce the vulnerability, the charging systems should be strategically installed in rural areas considering geographical characteristics and regional EV demands.

Analysis and improvement of transfer power capability considering movable load charging of EV (전기자동차 충전부하의 이동성을 고려한 전송 전력량의 해석 및 개선)

  • Kim, Deok Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.762-767
    • /
    • 2017
  • This paper presents an analysis for improving the power transfer capability in transmission lines caused by the movable load charging of electric vehicles (EVs). EVs are expected to be used more widely and replace gas fuel vehicles in the near future due to the shortage of fossil fuels and for environmental preservation. Movable load charging of EVs could lead to the convergence of transferred power flow and overloading conditions in transmission lines in a specific area of a power system, which is conventionally based on estimated fixed load capability. To analyze these conditions, the New England Test System was divided into four regions based on the load characteristics, and different charging scenarios were considered. In these scenarios, the regional power load was highly increased to 31% based on the standard charging capacity of an EV. As a solution to the overloading problem of transmission lines, a TCSC was installed serially on the overloaded line to directly control the transferred power under limited line capability (100% load capability). The simulation showed that the application of a few TCSCs could efficiently and economically control the line capability problem caused by movable load charging of EVs.

A Study on Voltage Sag Considering Real-Time Traffic Volume of Electric Vehicles in South Korea

  • Go, Hyo-Sang;Kim, Doo-Ung;Kim, Jun-Hyeok;Lee, Soon-Jeong;Kim, Seul-Ki;Kim, Eung-Sang;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1492-1501
    • /
    • 2015
  • This paper analyzes the effect of voltage sag on distribution systems due to the connection of Electric Vehicles (EVs). In order to study the impact of the voltage sag on the power system, two scenarios have been selected in this paper. The distribution system and EVs are modeled using the Electro Magnetic Transients Program (EMTP). The numbers of EVs are predicted based on the number of vehicles in distribution system of Seoul. In addition, the number of EVs is set up using real-time traffic in Seoul to simulate Scenario I and II. The simulation results show that voltage sag can occur if the distribution system has more than 30% of the total number of vehicles.

A Study on Modeling and Simulation of a 2MWh-Class Battery and Electric Vehicle Charging Station (2MWh급 배터리 및 전기자동차 충전스테이션의 모델링 및 시뮬레이션 연구)

  • Kim, Sung-Dong;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.68-70
    • /
    • 2021
  • The wind power generators installed in the Jeju area have already exceeded the supply in the Jeju area and are being thrown away. Accordingly, the government is conducting research on installing a 2MWh-class ESS(energy storage system) through a technology development project to charge wasted power and use it in an electric vehicle charging station. In this paper, in order to stably install a 2MWh class ESS, the electric vehicle charging model and ESS discharge model were modeled and simulated using Matlab Simulink. Through simulation, it was verified that the 2MWh class ESS operates stably in various scenarios.

  • PDF

Impact Evaluation of Plug-in Electric Vehicle Loading on Distribution Systems in North America (북미 배전계통에서의 플러그인 전기자동차에 대한 계통영향 평가)

  • Kook, Kyung-Soo;Maitra, Arindam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2236-2245
    • /
    • 2009
  • This paper proposes the process for evaluating the impact of charging the PHEV(Plug-In Hybrid Electric Vehicle) on the distribution systems, and analyzes the study results employing the actual systems as the PHEV is highly expected to increase in the automobile industries in North America in the near future. Since the charging load of the PHEV directly connected to the distribution systems would consume electric power much more than any other existing electric product of residential customers, the new modeling and process would be required to consider the PHEV in distribution systems planning. The EPRI(Electric Power Research Institute) is collaboratively conducting the impact study of PHEV on the distribution systems with power utilities in North America. This study models distribution systems and the charging load of the PHEV using OpenDSS software, and analyzes the impact of PHEV on the distribution systems by assuming various scenarios with different charging time and PHEV types.

A Study on Communication Controller of Electric Vehicle Supply Equipment for Information Exchange between Electric Vehicle and Power Grid (전기차와 전력계통의 정보교환을 위한 전기차 충전장치의 통신 제어기에 대한 연구)

  • Han, Ah;Shin, Minho;Kim, Intaek;Jang, Hyuk-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1564-1570
    • /
    • 2014
  • An electric vehicle (EV) not only receives electric power from the electric vehicle supply equipment (EVSE), but it also exchanges the information regarding charging process with the power gird through the EVSE. However, the EV and EVSE communicate using the ISO/IEC 15118 standard while the EVSE and power grid communicate using the IEC 61850 standard. Therefore, the EVSE should support both the ISO/IEC 15118 and IEC 61850 standards, and provide a data mapping function between the two communication protocols so that the EV and power grid, which support different protocols, can communicate with each other throughout the charging process. In this paper, we propose a mapping method of the EVSE, which converts the ISO/IEC 15118 data to IEC 61850 and vice versa, based on the XML schema of each protocol. The proposed method converts the data using the XSL (eXtensible Stylesheet Language) method, which defines the data mapping between two XML schemas. Our approach is more flexible and easier to maintain against changes in charging scenarios and the standards than other existing approaches such as one-to-one data mapping methods.

Market Segmented Analysis of Electric Vehicle Purchasing Behavior in Seoul (서울시 전기차 구매행태에 대한 시장분할 분석)

  • HAHN, Jin-Seok;LEE, Jang-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.2
    • /
    • pp.129-140
    • /
    • 2018
  • In this study, we analyzed the electric vehicle (EV) purchasing behavior with market segmentation in Seoul using the binary logit model. For the model estimation, the experimental design of SP survey generated 24 scenarios with purchase price, charging station availability, and driving range of EVs. The results of market segmentation analysis indicated that the owners of subcompact and compact size cars were primarily affected by the purchasing price while those of mid and full size cars were more sensitive to the charging station availability. By housing type, the charging station availability was the most important factor for the residents of apartment while the purchase price was the most important factor to choose the EVs. These results presented that the EV supply strategy of the automobile manufacturer should be diversified according to the marketing target and the expansion of the public charging infrastructure should be the top priority in the government policy.

Stakeholder Oriented Economical Efficiency Analysis on the Scenario to Implement Smart Transportation Services (지능형 운송 서비스 구축 시나리오에 대한 이해관계자 중심 경제성 분석)

  • Shin, KwangSup;Moon, Yongma;Hur, Wonchang;Kim, Woo Je
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • This research proposed a new method to evaluate the objective validity to launch smart transportation services that various stakeholders are complicatedly inter-connected. First of all, we have designed the fundamental business model to form the smart transportation services and defined the stakeholders taking part in the services. Also, the criteria to evaluate the economical validity has been proposed based on the relationship among stakeholders. Especially, in the case EV drivers and charging service providers, the economical validity depends on the scale of spreading. Therefore, we have compared the two extreme scenarios, the poor and stable level of EV spreading. According to the result, it may be said that EV drivers and charging service providers cannot be guaranteed the economical validity due to the burden of initial investment. On the contrary to this, suppliers of EV and charging gears may secure more than a certain level of profit. In addition, the government may have great profit due to reducing the CO2 emission and cost for importing energy sources. Therefore, it is needed to enhance the level of supporting EV drivers and charging service providers at the first stage. Also, the impact of the ratio of EV and charging service stations on the economical validity of smart transportation should be further investigated.

Fuzzy Logic Based Energy Management For Wind Turbine, Photo Voltaic And Diesel Hybrid System

  • Talha, Muhammad;Asghar, Furqan;Kim, Sung Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.351-360
    • /
    • 2016
  • Rapid population growth with high living standards and high electronics use for personal comfort has raised the electricity demand exponentially. To fulfill this elevated demand, conventional energy sources are shifting towards low production cost and long term usable alternative energy sources. Hybrid renewable energy systems (HRES) are becoming popular as stand-alone power systems for providing electricity in remote areas due to advancement in renewable energy technologies and subsequent rise in prices of petroleum products. Wind and solar power are considered feasible replacement to fossil fuels as the prediction of the fuel shortage in the near future, forced all operators involved in energy production to explore this new and clean source of power. Presented paper proposes fuzzy logic based Energy Management System (EMS) for Wind Turbine (WT), Photo Voltaic (PV) and Diesel Generator (DG) hybrid micro-grid configuration. Battery backup system is introduced for worst environmental conditions or high load demands. Dump load along with dump load controller is implemented for over voltage and over speed protection. Fuzzy logic based supervisory control system performs the power flow control between different scenarios such as battery charging, battery backup, dump load activation and DG backup in most intellectual way.

Magnetic Resonant Wireless Power Transfer with Rearranged Configurations

  • Kang, Seok Hyon;Jung, Chang Won
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.76-85
    • /
    • 2017
  • We investigate the indirect-fed magnetic resonant wireless power transfer (MR-WPT) system for wireless charging for mobile devices by rearranging the loops and coils. Conventional MR-WPT is difficult to apply to consumer electronic products because of the arrangement of the resonators. In addition, there are restrictions for charging using a wireless technology, which depend on the circumstances of the usage scenarios. For practical applications, we analyzed the transfer efficiency of the MR-WPT system with various combinations and positions of resonators. Three rearranged configurations (Out-Out, Out-In, In-In) have been considered and experimentally investigated using hollow pipe loops and wire copper coils. There were four types of loops and two types of coils; each one had a different diameter and thickness. The results of the measurements show that the trends of the transfer efficiencies for the three configurations were similar. A transfer efficiency of 82.5% was achieved at a 35-cm distance between the 60-cm diameter transmitter (Tx) and receiver (Rx) coils.