• Title/Summary/Keyword: Charging Particles

Search Result 93, Processing Time 0.018 seconds

Dependence of Thermal and Electrochemical Properties of ceramic Coated Separators on the Ceramic Particle Size (알루미나 크기에 따른 세라믹 코팅 분리막의 열적 특성 및 전기화학적 특성)

  • Park, Sun Min;Yu, Ho Jun;Kim, Kwang Hyun;Kang, Yun Chan;Cho, Won Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.2
    • /
    • pp.27-33
    • /
    • 2017
  • Conventional lithium ion batteries suffer from notorious safety issues caused by inevitable lithium dendrite formation and proliferation during over/fast charging processes. The lithium dendrites or mechanical damage on the separator induce internal short circuit in LiB that generates extensive amount of heat within contacted electrode surfaces through the separator. During this heat generation, conventional polyolefin separators shrinks dramatically, and increasing short circuit pathway, that causes the battery to explode. To overcome this serious issue, ceramic coated separators are developed in commercial LiB to enhance thermal and mechanical stability. In this paper, various size(IL = 488.5 nm, I = 538.7 nm, S = 810.3 nm, D = 1533.3 nm) of $Al_2O_3$ particles are coated using styrene-butadiene rubber(SBR) / carboxymethyl cellulose(CMC) binder on PE separator to investigate its thermal stability and electrochemical effect on LiB coin cell with NCM cathode and Li metal anode.

Thermally Conductive Polymer Composites for Electric Vehicle Battery Housing (전기자동차 배터리 하우징용 열전도성 고분자 복합재료)

  • Yoon, Yeo-Seong;Jang, Min-Hyeok;Moon, Dong-Joon;Jang, Eun-jin;Oh, Mee-Hye;Park, Joo-Il
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.331-337
    • /
    • 2022
  • Manufactured thermoplastic composite materials to replace the metal materials used as battery housing materials for electric vehicles with lightweight materials. As the matrix material, nylon 6 which is a polymer material was used. Boron Nitrate(BN), which has high thermal conductivity, was used to provide heat dissipation performance. The heat dissipation characteristics of the thermally conductive polymer composite material according to the BN content and particle size were analyzed. The thermal conductivity value increased as the filler content increased, and composite materials particle size of 60 to 70㎛ and BN content of 50%, the thermal conductivity was 1.4 W/mK. The larger the particle size, the wider the inter-particle interface contact surface, which means that a thermal path was formed. wider the interfacial contact surface between the particles, and the thermal path was formed. A battery housing was manufactured using the manufactured thermally conductive polymer composite material, and the temperature change during charging and discharging of the cell was observed, and the possibility as a substitute material for the battery housing was confirmed.

Effect of Biodegradable Waste Particle Size on Aerobic Stabilization Reactions in MBT System (생분해성 폐기물 입경이 MBT시스템과 연계된 호기성안정화반응에 미치는 영향)

  • Kwon, Sang-Hagk;Ban, Jong-Sub;Kim, Su-Jin;Phae, Chae-Gun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.523-529
    • /
    • 2011
  • This study has been performed to examine the influence of the size of particles on the stabilization in the aerobic stabilization equipment connected with MBT system. The biodegradable waste inside the reactor (60% of food waste, 25% of paper waste, 2% of wood waste and 5% of compost) has been charged in same composition. The degree of stabilization was compared and analyzed after charging with adjustment of particle size in 5 mm, 10 mm, 20 mm, 50 mm, 100 mm and state of no separation. The experiment revealed that highest temperature beyond $65^{\circ}C$ was shown in the particle size of less than 50 mm in change of temperature and the highest temperature was about $50^{\circ}C$ in reactor of 100 mm and no separation. The proportionality between generated quantity of $CO_2$ and particle size was not observed, even the highest in generated quantity was shown in over 100 mm. The weight changes based on wet and dry conditions in the reaction process showed the 30% and 46% of reduction in the smallest particle size of 5 mm and it showed the trend of the lower reduction rate at the bigger particle size. The water soluble $COD_{Cr}$ and TOC showed the reduction rate of 60% in reactor of particle size in 100 mm and no separation while the reduction rate comparing to the initial stage of reaction in the reactor of less than 50 mm was 80%. Such result derived the conclusion of acceleration in the decomposing stabilization of biodegradable material due to the decomposing rate of organic substance as the particle size of biodegradable waste gets smaller. It is concluded as necessary to react in adjustment under 50 mm of particle size as much as possible.