• Title/Summary/Keyword: Charging Monitoring

Search Result 74, Processing Time 0.026 seconds

A study on energy harvesting time of Solar Cell battery for Sensor node (센서 노드 배터리 충전을 위한 Solar Cell의 완충시간에 대한 연구)

  • Choi, Young-Suk;Ryu, Jeong-Tak;Kim, Kyung-Ki;Kim, H.C.
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • Ubiquitous network and wireless sensor networks is being applied in various fields. Located at target areas, node of wireless sensor network uses batteries as a power source. Batteries have a limited energy in sensor network applications. Also, before use, the battery must be charged and It is difficult to replace the battery. Therefore, energy harvesting technology is being researched and being developed for long life of sensor node. Especially, sola energy is being extensively researched. because that can have great amounts of energy than other environmental energy in a short time. In this study, we tested battery charging and recharging, operation of sensor node using Solar Cell. Also, monitoring data gathering and voltage Analysis showed energy harvesting time of Sola Cell battery for sensor node and operation of sensor node.

Implementation and Economic Evaluation of Movable Power Supply Device for Electric Vehicle (EV용 이동형 전원공급장치의 구현 및 경제성 평가에 관한 연구)

  • Choi, Sung-Moon;Han, Byeong-Gill;Lee, Hu-Dong;Kim, Mi-Young;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.77-86
    • /
    • 2020
  • Power quality problems caused by feeder voltage drop and extension construction cost problems can occur with the increasing utilization rates of the existing fixed-type EV (electric vehicle) charger. Moreover, EV users might not be able to access the EV charger due to a lack of EV charging facilities. Therefore, this paper proposes an MPSD (movable power supply device) for EVs to overcome user inconvenience caused by the insufficient number of chargers and extension cost issues. The proposed MPSD was mainly composed of a PV (photovoltaic) system, ESS (energy storage system), EV charging system, and monitoring and control system. Furthermore, there are three operation modes available to enhance the flexibility of the MPSD application, depending on the situation. This paper also presents an economical evaluation modeling using the present worth method to consider the cost and benefit elements. The simulation results based on proposed modeling showed that MPSD is more economical than the existing EV charger. Moreover, its profit can be increased significantly depending on the distance to the installation point.

Analysis of Operation Data Monitoring for LPG-Hydrogen Multi-Fueling Station (LPG-수소복합충전소 운영데이터 모니터링 분석)

  • Park, Songhyun;Kim, Donghwan;Ku, Yeonjin;Kim, Piljong;Huh, Yunsil
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.1-7
    • /
    • 2019
  • In response to the recent increase in demand for hydrogen stations, the Ministry of Trade and Industry has enacted and promulgated special notifications to enable the installation of hydrogen stations in the form of the combined complex in existing automotive fuel supply facilities such as LPG, CNG, and gas stations. Hydrogen multi energy filling stations haven't been operated yet in Korea till the establishment of special standards, so it is necessary create special standards by considering all Korean environmental characteristics such as four seasons and daily crossings. In this study, we collected and analyzed the charging data of Ulsan LPG-Hydrogen Multi Fueling Station installed for the first time in Korea. The data are hourly temperature and pressure data from compressors, storage vessels and dispensers. We used the data collected for a year, including the highest temperature and the lowest temperature in Ulsan to compare seasonal characteristics. As a result, it was found that the change of the outside temperature affects the initial temperature of the vehicle's container of the hydrogen car, which finally affects the charging time and the charging speed of the vehicle. There was no effect on vehicle containers because the limit temperature suggested by the Korean Hydrogen Station Standard(KGS FP217) and the US Filling Protocol(SAE J2601) was not exceeded.

Development of Low-Power IoT Sensor and Cloud-Based Data Fusion Displacement Estimation Method for Ambient Bridge Monitoring (상시 교량 모니터링을 위한 저전력 IoT 센서 및 클라우드 기반 데이터 융합 변위 측정 기법 개발)

  • Park, Jun-Young;Shin, Jun-Sik;Won, Jong-Bin;Park, Jong-Woong;Park, Min-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.301-308
    • /
    • 2021
  • It is important to develop a digital SOC (Social Overhead Capital) maintenance system for preemptive maintenance in response to the rapid aging of social infrastructures. Abnormal signals induced from structures can be detected quickly and optimal decisions can be made promptly using IoT sensors deployed on the structures. In this study, a digital SOC monitoring system incorporating a multimetric IoT sensor was developed for long-term monitoring, for use in cloud-computing server for automated and powerful data analysis, and for establishing databases to perform : (1) multimetric sensing, (2) long-term operation, and (3) LTE-based direct communication. The developed sensor had three axes of acceleration, and five axes of strain sensing channels for multimetric sensing, and had an event-driven power management system that activated the sensors only when vibration exceeded a predetermined limit, or the timer was triggered. The power management system could reduce power consumption, and an additional solar panel charging could enable long-term operation. Data from the sensors were transmitted to the server in real-time via low-power LTE-CAT M1 communication, which does not require an additional gateway device. Furthermore, the cloud server was developed to receive multi-variable data from the sensor, and perform a displacement fusion algorithm to obtain reference-free structural displacement for ambient structural assessment. The proposed digital SOC system was experimentally validated on a steel railroad and concrete girder bridge.

Monitoring System of AtoN Charge and Discharge Controller (항로표지 충·방전조절기의 모니터링 시스템)

  • Ye, Seong-hyeon;Han, Soonhee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.639-642
    • /
    • 2014
  • If the power of the general is not supplied, Visual aids utilize solar power system. The power supply system of these, the role of the power regulator to manage the charging and discharging is very important. In recent years, by introducing the IT technology for the effective management of visual aids, it was supposed to add a device that uses the power consumption. Thus, the importance of power regulator has increased. Currently, the power regulator is installed inside the AtoN, if the accessibility is not ensured, there is a difficulty that can not be checked. In order to solve these problems, in this paper, you have installed the Blue-tooth module to the power regulator. Also, by using the Blue-tooth communication function of a smart phone, a radio check has implemented a possible monitoring system. Advantage of the system implemented is a simple configuration and low installation cost. Also, it is possible to check the state information of the real-time power supply regulator. In addition, it has the effect of preventing accidents and reducing costs of inspection.

  • PDF

A Study on the Thermal Characteristics of Cooling System for Securing Battery Stability in Electric Vehicle (전기자동차 배터리 안정성 확보를 위한 냉각장치 열특성 연구)

  • Otgonpurev, Tuul;Ko, Gwang Soo;Park, Youn Cheol
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.2
    • /
    • pp.7-12
    • /
    • 2020
  • The battery of an electric vehicle is a key part of the energy supply to operate the vehicles. There are many factors affecting battery life such as charging method, discharge rate, and ambient temperature those are requires systematic monitoring and management. To solve the issues like environmental problems and fuel consumption reduction the battery needs more performance improvement. In this study, it was analyzed the thermal characteristics and securing battery stability for electric vehicle battery cooling system. The simulation test was operated using GT-suite software with several conditions like cooling capacity 1, 2 and 4 kW, cooling flow rate 5, 10, 20 and 30 LPM, and battery initial temperatures 40, 35, and 30℃ at the temperature of ambient 25℃. The results shown that the case of cooling flow rate at 20 LPM was most efficient among all above conditions.

Development of PC-based Auto Inspection System for Smart Battery Protection Circuit Module (PC기반의 스마트 배터리 보호모듈 자동 검사 시스템 개발)

  • Yoon, Tae-Sung;Jang, Gi-Won;Park, Ju-No;Lee, Jeong-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.275-277
    • /
    • 2005
  • In a lithium-ion battery which is being used in many portable electronic goods, electrolyte is disaggregated and then the gas is happened when electric charging volt is over the 4.5V. So, the pressure on the safety valve is increased and electrolyte is leaked out in the cell. It leads to the risk of explosion. On the other hand, in the case which the battery is discharged excessively, the negative pole is damaged and the performance of the battery is deteriorated. The protection module of a lithium-ion battery is used for preventing such risk and the inspection system is needed to check the performance of such protection module. In this research, a PC-based auto inspection system is developed for the inspection of a battery protection module using Dallas chipset. In the inspection system, AVRl28 chip is used as a controller and the communication protocol is developed for the data communication between the protection module and the AVR128 chip. And GPIB interface is used for the control of measuring devices. Also, MMI environment is developed using LabView for convenient monitoring by the tester.

  • PDF

Development of an Intelligent Security Robot System for Home Surveillance (가정용 지능형 경비 로봇 시스템 개발)

  • Park, Jeong-Ho;Shin, Dong-Gwan;Woo, Chun-Kyu;Kim, Hyung-Chul;Kwon, Yong-Kwan;Choi, Byoung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.810-816
    • /
    • 2007
  • A security robot system named EGIS-SR is a mobile security robot through one of the new growth engine project in robotic industries. It allows home surveillance through an autonomous mobile platform using onboard cameras and wireless security sensors. EGIS-SR has many sensors to allow autonomous navigation, hierarchical control architecture to handle lots of situations in monitoring home surveillance and mighty networks to achieve unmanned security services. EGIS-SR is tightly coupled with a networked security environment, where the information of the robot is remotely connected with the remote cockpit and patrol man. It achieved an intelligent unmanned security service. The robot is a two-wheeled mobile robot and has casters and suspension to overcome a doorsill. The dynamic motion is verified through $ADAMS^{TM}$ simulation. For the main controller, PXA270 based hardware platform based on linux kernel 2.6 is developed. In the linux platform, data handling for various sensors and the localization algorithm are performed. Also, a local path planning algorithm for object avoidance with ultrasonic sensors and localization using $StarGazer^{TM}$ is developed. Finally, for the automatic charging, a docking algorithm with infrared ray system is implemented.

Development of Charger/Discharger to Test Performance for EDLC (EDLC를 위한 성능시험용 충방전기 개발)

  • Kim, Geum-Soo;Moon, Jong-Hyun;Cho, Hyun-Cheol;Kim, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.16-22
    • /
    • 2012
  • With the increase of consumption of new renewable energy, the use of Electric Double Layer Capacitor(EDLC) is being gradually widened as the next generation energy storage device. In order to expand the market of EDLC which is recently receiving a lot of attraction as a new promising area, development of a charge/discharge cycle tester to measure and test performance, is essential. Therefore, this research designed a circuit to measure capacity and internal resistance and a circuit to measure voltage maintenance properties, based on EDLC's basic charging/discharging properties so it is able to measure the state of charge and discharge at high speed. When evaluating performance characteristics, the 5[V]/100[A] prototype-EDLC charge/discharge testing system developed for this research showed ${\pm}0.1$[%] of accuracy of voltage and current measurement. It was also proved that the developed charge/discharge testing system for EDLC can be applied to the actual industry, when testing the entire system using a program produced for data monitoring and acquisition.

Development of LED Street Lighting Controller for Wind-Solar Hybrid Power System

  • Lee, Yong-Sik;Gim, Jae-Hyeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1643-1653
    • /
    • 2014
  • This paper presents the design and implementation of a wind-solar hybrid power system for LED street lighting and an isolated power system. The proposed system consists of photovoltaic modules, a wind generator, a storage system (battery), LED lighting, and the controller, which can manage the power and system operation. This controller has the functions of maximum power point tracking (MPPT) for the wind and solar power, effective charging/discharging for the storage system, LED dimming control for saving energy, and remote data logging for monitoring the performance and maintenance. The proposed system was analyzed in regard to the operation status of the hybrid input power and the battery voltage using a PSIM simulation. In addition, the characteristics of the proposed system's output were analyzed through experimental verification. A prototype was also developed which uses 300[W] of wind power, 200[W] of solar power, 60[W] LED lighting, and a 24[V]/80[Ah] battery. The control system principles and design scheme of the hardware and software are presented.