• 제목/요약/키워드: Charging Algorithm

검색결과 175건 처리시간 0.032초

Sector-based Charging Schedule in Rechargeable Wireless Sensor Networks

  • Alkhalidi, Sadam;Wang, Dong;Al-Marhabi, Zaid A. Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권9호
    • /
    • pp.4301-4319
    • /
    • 2017
  • Adopting mobile chargers (MC) in rechargeable wireless sensors network (R-WSN) to recharge sensors can increase network efficiency (e.g., reduce MC travel distance per tour, reduce MC effort, and prolong WSN lifetime). In this study, we propose a mechanism to split the sensing field into partitions that may be equally spaced but differ in distance to the base station. Moreover, we focus on minimizing the MC effort by providing a new charging mechanism called the sector-based charging schedule (SBCS), which works to dispatch the MC in charging trips to the sector that sends many charging requests and suggesting an efficient sensor-charging algorithm. Specifically, we first utilize the high ability of the BS to divide the R-WSN field into sectors then it select the cluster head for each sector to reduce the intra-node communication. Second, we formulate the charging productivity as NP-hard problem and then conduct experimental simulations to evaluate the performance of the proposed mechanism. An extensive comparison is performed with other mechanisms. Experimental results demonstrate that the SBCS mechanism can prolong the lifetime of R-WSNs by increasing the charging productivity about 20% and reducing the MC effort by about 30%.

A Priority Index Method for Efficient Charging of PEVs in a Charging Station with Constrained Power Consumption

  • Kim, Seung Wan;Jin, Young Gyu;Song, Yong Hyun;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.820-828
    • /
    • 2016
  • The sizable electrical load of plug-in electric vehicles may cause a severe low-voltage problem in a distribution network. The voltage drop in a distribution network can be mitigated by limiting the power consumption of a charging station. Then, the charging station operator needs a method for appropriately distributing the restricted power to all plug-in electric vehicles. The existing approaches have practical limitation in terms of the availability of future information and the execution time. Therefore, this study suggests a heuristic method based on priority indexes for fairly distributing the constrained power to all plug-in electric vehicles. In the proposed method, PEVs are ranked using the priority index, which is determined in real time, such that a near-optimal solution can be obtained within a short computation time. Simulations demonstrate that the proposed method is effective in implementation, although its performance is slightly worse than that of the optimal case.

Vehicle Waiting Time Information Service using Vehicle Object Detection at Fuel Charging Station

  • Rijayanti, Rita;Muhammad, Rifqi Fikri;Hwang, Mintae
    • Journal of information and communication convergence engineering
    • /
    • 제18권3호
    • /
    • pp.147-154
    • /
    • 2020
  • In this study, we created a system that can determine the number of vehicles entering and departing a charging station in real time for solving waiting time problems during refueling. Accordingly, we use the You Only Look Once object detection algorithm to detect and count the number of vehicles in the charging station and send the data to the Firebase Realtime Database. The result is shown using an Android application that provides a map function with the Kakao Maps API at the user interface side. Our system has an accuracy of 91% and an average response time of 3.1 s. Therefore, this system can be used by drivers to determine the availability of a charging station and to identify the charging station with the least waiting time for charging their vehicle.

A Design and Control of Bi-directional Non-isolated DC-DC Converter with Coupled Inductors for Rapid Electric Vehicle Charging System

  • Kang, Taewon;Kim, Changwoo;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungil;Kim, Daegyun
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.429-430
    • /
    • 2011
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology with coupled inductors. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charging mode, constant-current mode, and constant-voltage mode. The pre-charging mode employs the staircase shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is able to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 67A. The optimal discharging algorithm for Vehicle to the Grid (V2G) operation has been adopted to maintain the discharging current of 1C. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

  • PDF

Analysis for Evaluating the Impact of PEVs on New-Town Distribution System in Korea

  • Choi, Sang-Bong
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.859-864
    • /
    • 2015
  • This paper analyzes the impact of Plug-in Electric vehicles(PEVs) on power demand and voltage change when PEVs are connected to the domestic distribution system. Specifically, it assesses PEVs charging load by charging method in accordance with PEVs penetration scenarios, its percentage of total load, and voltage range under load conditions. Concretely, we develop EMTDC modelling to perform a voltage distribution analysis when the PEVs charging system by their charging scenario was connected to the distribution system under the load condition. Furthermore we present evaluation algorithm to determine whether it is possible to adjust it such that it is in the allowed range by applying ULTC when the voltage change rate by PEVs charging scenario exceed its allowed range. Also, detailed analysis of the impact of PEVs on power distribution system was carried out by calculating existing electric power load and additional PEVs charge load by each scenario on new-town in Korea to estimate total load increases, and also by interpreting the subsequent voltage range for system circuits and demonstrating conditions for countermeasures. It was concluded that total loads including PEVs charging load on new-town distribution system in Korea by PEVs penetration scenario increase significantly, and the voltage range when considering ULTC, is allowable in terms of voltage tolerance range up to a PEVs penetration of 20% by scenario. Finally, we propose the charging capacity of PEVs that can delay the reinforcement of power distribution system while satisfying the permitted voltage change rate conditions when PEVs charging load is connected to the power distribution system by their charging penetration scenario.

Rapid Electric Vehicle Charging System with Enhanced V2G Performance

  • Kang, Taewon;Kim, Changwoo;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungik;Kim, Simon
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.201-202
    • /
    • 2012
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charging mode, constant-current mode, and constant-voltage mode. Each mode is operated according to battery states: voltage, current and State of Charging (SOC). The proposed system is able to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 67A. The optimal discharging algorithm for Vehicle to the Grid (V2G) operation has been adopted to maintain the discharging current of 1C. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system. Experiment waveforms confirm the proposed functionality of the charging system.

  • PDF

전기차 배터리 충전기용 강인한 단위 입력 역률 제어장치 (Robust and Unity Input Power Factor Control Scheme for Electric Vehicle Battery Charger)

  • 웬콩롱;이홍희
    • 전력전자학회논문지
    • /
    • 제20권2호
    • /
    • pp.182-192
    • /
    • 2015
  • This study develops a digital control scheme with power factor correction for a front-end converter in an electric vehicle battery charger. The front-end converter acts as the boost-type switching-mode rectifier. The converter assumes the two roles of the battery charger, which include power factor control and robust charging performance. The proposed control scheme consists of a charging control algorithm and a grid current control algorithm. The scheme aims to obtain unity input power factor and robust performance. Based on the linear average model of the converter, a constant-current constant-voltage charging control algorithm that passes through only one proportional-integral controller and a current feed-forward path is proposed. In the current control algorithm, we utilized a second band pass filter, a single-phase phase-locked loop technique, and a duty-ratio feed-forward term to control the grid current to be in phase with the grid voltage and achieve pure sinusoidal waveform. Simulations and experiments were conducted to verify the effectiveness of the proposed control scheme, both simulations and experiments.

48V용 납축전지 급속 충전기 (Rapid Charger for 48V Lead-acid Battery)

  • 안석호;장성록;류홍제;모석천;오세원;박찬중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.945_946
    • /
    • 2009
  • This paper describes the development of the rapid battery charger for lead-acid battery. Due to heat which is caused by increased internal resistance during charging, it is difficult to increase charging current for the lead-acid battery. In this paper, the rapid charging algorithm which apply short discharging pulse current during charging procedure is developed and it makes the ion layer, which is generated during charging time, disappeared into electrolyte. The prototype battery charger based on resonant converter is developed for 48V battery charger and test procedure is introduced.

  • PDF

A Method to Calculate Charge for Reactive Power Service under Competition of Electric Power Utilities

  • Ro, Kyoung-Soo;Park, Sung-Chul
    • KIEE International Transactions on Power Engineering
    • /
    • 제11A권4호
    • /
    • pp.39-44
    • /
    • 2001
  • As electric power systems have been moving from vertically integrated utilities to a deregulated environment, the charging of reactive power management is a new challenging them for market operators. This paper proposes a new methodology to compute the costs of providing reactive power management service in a competitive electrical power market. The proposed formulation, which is basically different from those shown in the literature, consists of two parts. One is to recover investment capital costs of reactive power supporting equipment based on a reactive power flow tracing algorithm. The other is to recover operational costs based on variable spot prices using the optimal power flow algorithm. The charging shapes resulted from the proposed approach exhibit a quite good meaning viewed from a practical sense. It turns out that reactive power charged are mostly due to recovery of capital costs and slightly due to recovery of operational costs. The methods can be useful in providing additional insight into power system operation and can be used to determined tariffs of a reactive power management service.

  • PDF

Ni-Cd전지용 충전 알고리즘을 이용한 고속전철용 ZVZCS형 충전장치개발 (The Development of ZVZCS type Battery Charger for High Speed Trail Car with Ni-Cd Battery Charging Algorithm)

  • 김연준
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.548-551
    • /
    • 2000
  • The battery charger for high speed trail car is very important power source for the purpose of safty and system stability. it provides control power of VVVF, CVCF, DC/DC converter and inverter for traction motor. This paper included power circuit of the ZVZCS type battery charger for high speed trail car and battery included power circuit of the ZVZCS type battery charger for high speed trail car and inverter for traction motor. This paper included power circuit of the ZVZCS type battery charger for high speed trail car an battery charging algorithm. Also the optimum parallel operation of 50Kw battery charger for high speed trail car and charging control method of Ni-Cd battery illustrates validity and effectiveness through the experiments.

  • PDF