• 제목/요약/키워드: Charged human body

검색결과 20건 처리시간 0.026초

대전인체의 방전위험성 평가를 위한 모델 및 예방진단 프로그램 개발 (Development of Discharge Model and Preventive Diagnosis Program for Discharge Risk Assessment of Charged Human Body)

  • 김두현;김상철;고은영
    • 한국안전학회지
    • /
    • 제13권3호
    • /
    • pp.80-87
    • /
    • 1998
  • This paper presents a study on the development of discharge model and computer program for assessing the risk of electrostatic discharge(ESD) of charged human body This ESD event is modelled as a two-body problem using spherical conductors, simulating the approach of a charged conductor (human body) to a second conductor (electronic equipment). The charge/discharge process for the model is formulated as a matrix of equations by Maxwell's method. Body potentials, energies and the charge transfer during a discharge are calculated. The developed program, based on the suggested scheme in this paper, is applied to a sample system. The results provide a better understanding of ESD event and demonstrate the usefulness of two-body model in practical applications.

  • PDF

대전인체의 정전기 방전에 대한 동적해석 - 준정적해석과의 비교 (Dynamic analysis of charged human body electrostatic discharge - comparison with quasi-static discharge)

  • 이종호;김두현;김상철;김상렬
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 1998년도 춘계 학술논문발표회 논문집
    • /
    • pp.257-262
    • /
    • 1998
  • In order to understand the characteristics of electrostatic discharge (ESD) by a charged human body, a dynamic analysis method based on RCL circuit and a quasi-static analysis method based on two-body model are introduced. In this paper, these methods calculate waveforms, discharge energy and potential difference to analyze the ESD phenomena from given initial conditions and geometry. Results are compared and discussed.

  • PDF

ESD에 의한 반도체소자의 손상특성 (Damage and Failure Characteristics of Semiconductor Devices by ESD)

  • 김두현;김상렬
    • 한국안전학회지
    • /
    • 제15권4호
    • /
    • pp.62-68
    • /
    • 2000
  • Static electricity in electronics manufacturing plants causes the economic loss, yet it is one of the least understood and least recognized effects haunting the industry today. Today's challenge in semiconductor devices is to achieve greater functional density pattern and to miniaturize electronic systems of being more fragile by electrostatic discharges(ESD) phenomena. As the use of automatic handling equipment for static-sensitive semiconductor components is rapidly increased, most manufacturers need to be more alert to the problem of ESD. One of the most common causes of electrostatic damage is the direct transfer of electrostatic charge from the human body or a charged material to the static-sensitive devices. To evaluate the ESD hazards by charged human body and devices, in this paper, characteristics of electrostatic attenuation in domestic semiconductor devices is investigated and the voltage to cause electronic component failures is investigated by field-induced charged device model(FCDM) tester. The FCDM simulator provides a fast and inexpensive test that faithfully represents ESD hazards in plants. Also the results obtained in this paper can be used for the prevention of semiconductor failure from ESD hazards.

  • PDF

Rompe-Weisel Model에 의한 대전 인체의 정전기 방전 에너지 평가 (Electrostatic Discharge Energy Estimation of the Charged Human Body by the Rompe-Weisel Model)

  • 이종호;김두현;강동규
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.54-59
    • /
    • 2003
  • The discharge energy by electrostatic discharge of the charged human body is calculated under the assumption that the stored charge is dissipated completely. However, it is well-known that the charge is slightly remained after electrostatic discharge. Therefore, The Rompe-Weisel model of the discharge analysis, which has somewhat more of a physical justification than the conventional energy equation, is proposed. It is proposed that the electrical conductivity of the arc should be proportional to the energy density transferred to it by Ohmic dissipation. For the electrostatic discharge energy analysis, the Rompe-Weisel model was compared by quasi static analysis. As a consequence, a study on a reliable energy evaluation based on simulation models during electrostatic discharge is carried out in this paper and is adopted to estimate the explosion hazards of flammable gases.

Charged Cable Model (CCM) 정전기 방전(ESD)에 의한 전자제어장치의 손상 (Charged Cable Model (CCM) ESD Damage to ECU)

  • 하명수;정재민
    • 한국자동차공학회논문집
    • /
    • 제21권2호
    • /
    • pp.159-165
    • /
    • 2013
  • ESD damage by Charged Cable Model (CCM) is introduced. Due to its own impedance characteristic unlike Human Body Model (HBM) or Machine Model (MM) electric component can be destroyed even though it is located after typical protection circuit. Possible mechanism of ESD damage to automotive electric control unit (ECU) in vehicle environment by CCM discharge was investigated. Based on investigation, field-returned vehicle whose ECU is expected to be damaged by CCM discharge was tested to reproduce it and similar electric component destruction inside ECU was observed. Suggestions to reduce the possibility of ESD damage by CCM are introduced.

정전기 방전 평가를 위한 간이형 도구 개발에 관한 연구 (A Study on the Development of Simulating Tool for Evaluation of Electrostatic Discharge)

  • 최상원
    • 한국안전학회지
    • /
    • 제26권3호
    • /
    • pp.15-22
    • /
    • 2011
  • Explosion and fire cause about 30 reported industrial major accidents a year by ignition source which discharge of electrostatic generated to flammable gas, vapor, dust and mixtures. It brings economically and humanly very large loss that accident was caused by fire and explosion from electrostatic discharge. Thus, it is very important that electrostatic discharge energy is to be control below not to be igniting flammable mixtures. There are two kinds of analysis model for electrostatic discharge, human body model and machine model. Human body model is available the parameter of human's electrical equivalent that capacitance is 100 pF, resistance is $1.5k{\Omega}$. To simulate and visualize the electrostatic discharge from human body need a very expensive and high voltage simulator. In this paper, we measured the value of capacitance and resistance concerned with test materials and sizing of specimen and the value of charged voltage concerned with test specimen and distance to develop an electrostatic charge/discharge simulating tool for teaching with which concerned industrial employee and students. The result of experiments, we conformed that the minimum ignition energy of methane-oxygen mixtures meets well the equation $W=1/2CV^2$, and found out that the insulating material and sizing of equivalent value having human body mode are the poly ethylene of 200 mm and 300 mm of diameter. Developed electrostatic charge/discharge simulating tool has many merits; simple mechanism, low cost, no need of electric power and so on.

가스충전소에서 작업복의 정전기 안전관리에 관한 연구 (A Study on the Safety Management of the Electrostatic in Working Clothes at the Gas Station)

  • 이금환;정재희
    • 한국안전학회지
    • /
    • 제24권6호
    • /
    • pp.39-44
    • /
    • 2009
  • In order to prevent fire and explosion due to the electrostatic discharge at the Gas Station etc. This result will be applied to standard in the future. Wearing the non-electrostatic removing wear, Charged voltage of human body is 3,980V(MIE is approximately 0.79mJ). There is a possibility of fire explosion because the MIE of LP gas is 0.25mJ. In accordance with using period(whasing times), Charged voltage is shown that propensity is increased. Electrostatic charge amount is upper standard($0.6{\mu}$C) of the hazard of electrostatic removing wear. There is a possibility of fire and explosion. Therefore, countermeasure and management are needed about gas station worker.

Target Size Dependence of Spatial Resolution in Heavy Ion CT

  • Ohno, Yumiko;Kohno, Toshiyuki;Kanai, Tatsuaki;Sasaki, Hitomi;Nanbu, Syuya
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.94-96
    • /
    • 2002
  • In order to achieve the radiotherapy more precisely using highly energetic heavy charged particles, it is important to know the distribution of the electron density in a human body, which is highly related to the range of charged particles. We can directly obtain the 2-D distribution of the electron density in a sample from a heavy ion CT image. For this purpose, we have developed a heavy ion CT system using a broad beam. The performance, especially the position resolution, of this system is estimated in this work. All experiments were carried out using the heavy ion beam from the HIMAC. We have obtained the projection data of polyethylene samples with various sizes using He 150 MeV/u, C 290 MeV/u and Ne 400 MeV/u beams. The used targets are the cylinders of 40, 60 and 80 mm in diameter, each of them has a hole of 10 mm in diameter at the center of it. The dependence of the spatial resolution on the target size and the kinds of beams will be discussed.

  • PDF

픽법에 의한 생체 내의 농도 확산 분석 (Analysis of density diffusion analysis by Fick's laws in the human body)

  • 최규식
    • 한국항행학회논문지
    • /
    • 제16권4호
    • /
    • pp.657-664
    • /
    • 2012
  • 용질분자를 용매를 통하여 전달시키는 기법중의 하나는 확산에 의한 것이다. 이러한 기전은 각개 용질분자의 열운동에 의한 것이다. 유체는 정지해 있는 상태로서 용질 전달의 핵심기전은 농도차에 의하여 결정된다. 인체 내에서 각종 하전 이온을 포함한 입자나 분자들은 체내의 농도차에 의해서 또는 외부 전계에 의해서 영향을 받아 고농도에서 저농도쪽으로 확산되어간다. 이러한 현상은 픽이 제안한 확산에 관한 제1법칙과 제2법칙에 의하여 정량적으로 전개할 수 있다. 본 논문에서는 체내의 물질이 확산되는 과정을 픽의 법칙을 이용하여 해석하고 그것을 실례를 통하여 구현하였다. 각 시간별 공간상의 확산현상에서 확산계수가 클 때는 시간이 경과함에 따라 발생지점의 농도는 현저히 낮아지고 그 농도가 주위로 급속히 확산되어감을 알 수 있었다. 그러나 어느 정도의 시간이 경과되면 그 농도의 감소는 매우 약해진다.

Deflective Behavior of Charged Particles in a Two-Stage Electrostatic Precipitator

  • Lim, Hun-Chan
    • 조명전기설비학회논문지
    • /
    • 제25권7호
    • /
    • pp.83-91
    • /
    • 2011
  • Even if smoke, fumes, mist or dust particles are removed by electrostatic precipitators (ESPs), the occurrence of ozone, which is harmful to human body, has to be severely restricted in the indoor environments of hospitals, offices, and workshops. Therefore, the two-stage ESP generating positive corona at the ionizer is typically used because it creates less ozone than the two-stage ESP generating negative corona at the ionizer. In order to predict the collection performance and the optimal design of the two-stage ESP applied to positive high-voltage, particle concentration is experimentally investigated in this paper. In addition, particle motion within the collector section is also numerically analyzed. The positive corona discharge current of the ionizer is found to be affected by the applied voltage in the collector section but less so by the particle concentration. Particle concentration shows a minimum near the high voltage electrode of the collector section. The minimum value of the collection efficiency is almost proportional to gas velocity. When the collector length decreases, the minimum value of the collection efficiency increases. Charged particles entering the collector region are linearly deflected towards the grounded plate by an electric field. From the above experimental and numerical results, two empirical equations on the concentration ratio and the collection efficiency are derived, and are in good agreement with the experimental data.