• Title/Summary/Keyword: Charge trapping

Search Result 143, Processing Time 0.034 seconds

Fabrication and polysilicon Resistors Compensated with Boron and Phosphorous Ion-Implantation (Boron과 Phosphorous 이온주입에 의한 다결정 실리콘 저항의 제조)

  • 김지범;최민성
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.5
    • /
    • pp.813-817
    • /
    • 1987
  • High value sheet resistance (Rs' 1K-33K\ulcorner/) polysilicon resistors were fabricated using double ion implantation with boron as the major dopant and phosphorus compensation. It is observed that Rs sensitivity to the net doping concentration is decreased by one order of magnitude compared to the conventional (boron implanted)polysilicon resistors. The temperature co-efficient of resistance (TCR) measured between 25\ulcorner and 125\ulcorner shows equivalent values to those of non-compensated resistors for the same Rs. A qualitative electrical conductiion mechanism for compensated polysilicon resistor is proposed, based on the existing grain boundary charge trapping theory.

  • PDF

Erasing characteristic improvement in SONOS type with engineered tunnel barrier (Engineered tunnel barrier를 갖는 SONOS 소자에서의 소거 속도 향상)

  • Park, Goon-Ho;You, Hee-Wook;Oh, Se-Man;Kim, Min-Soo;Jung, Jong-Wan;Lee, Young-Hie;Chung, Hong-Bay;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.97-98
    • /
    • 2009
  • Tunneling barrier engineered charge trap flash (TBE-CTF) memory capacitor were fabricated using the tunneling barrier engineering technique. Variable oxide thickness (VARIOT) barrier and CRESTED barrier consisting of thin $SiO_2$ and $Si_3N_4$ dielectrics layers were used as engineered tunneling barrier. The charge trapping characteristic with different metal gates are also investigated. A larger memory window was achieved from the TBE-CTF memory with high workfunction metal gate.

  • PDF

Thermally Stimulated Currents of PE/Ionomer Blends (PE/Ionomer블렌드의 열자격 전류)

  • ;John Tanaka;Dwight H. Damon
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.8
    • /
    • pp.808-815
    • /
    • 1991
  • The behavior of space charge in PE/ionomer blends has been investigated using the thermally stimulated current (TSC) technique. In the blends, at least two TSC peaks over the temperature range from -50 to 100\ulcorner are observed, one at -5 ~ 10\ulcorner (a peak) and the others at above 60\ulcorner (a peak). The a peak is assigned as the orientation of dipoles from the ionomer component. Two a peaks seem to be related to the charge trapping at sites related to the crystalline phases. One a peak is associated with the ionic interfaces and the other with the ethylene chains without the ionic interfaces. The amount of charges stored in PE/Surlyn 1652 blends increases as the poling field increases over the field range of +8 ~ +30 kV/mm, whereas that in PE/Surlyn 1601 blends increases slightly at low poling fields and then decreases at high poling fields above +10 kV/mm. Exact reasons for such a dirrerence are not known at this point.

  • PDF

A Study on the Space Charge Measurement Technique and Carrier Polarity of Insulating Materials on Power Cable (전력케이블용 절연재료의 캐리어 극성 및 공간전하 측정기술에 관한 연구-PE-EVA에서의 하전입자의 거동)

  • 국상훈;박중순;강용철;권영수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.2
    • /
    • pp.185-191
    • /
    • 1992
  • In this paper, it is attempted to distinguish the charged particles and to judge the polarity by the use of Thermally Stimulated Current(TSC) and Temperature Gradient Thermally Stimulated Surface Potential Measurement(TG-TSSP)with experimental insulation material XLPE-EVA for power cables which is made by blending cross-linked polyethylene(XLPE) and ethylene-vinylacetate copolymer(EVA). In addition, it is performed to investigate the effect of EVA blending. From the experimental results, it is known that for the case of XLPE-EVA blended experimental material, the generation of space charged electric field is not obtained in the high temperature region due to the obatruction of the injection of trapping carrier by the electron and the positive hole.

  • PDF

A Study on Chopper Circuit for Variation of Inductance and Threshold Voltage based on IGBT (IGBT 기반 인덕턴스 및 문턱전압 변화에 따른 초퍼 회로의 연구)

  • Lho, Young-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.504-508
    • /
    • 2010
  • The development of high voltage Insulated Gate Bipolar Transistor (IGBT) have given new device advantage in the areas where they compete with conventional GTO (Gate Turnoff Thyristor) technology. The IGBT combines the advantages of a power MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor) and a bipolar power transistor. The change of electrical characteristics for IGBT is mainly coming from the change of characteristics of MOSFET at the input gate and the PNP transistors at the output. The change of threshold voltage, which is one of the important design parameters, is brought by charge trapping at the gate oxide under the environment that radiation exists. The energy loss will be also studied as the inductance values are changed. In this paper, the electrical characteristics are simulated by SPICE, and compared for variation of inductance and threshold voltage based on IGBT.

Floating Gate Organic Memory Device with Tunneling Layer's Thickness (터널링 박막 두께 변화에 따른 부동 게이트 유기 메모리 소자)

  • Kim, H.S.;Lee, B.J.;Shin, P.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.6
    • /
    • pp.354-361
    • /
    • 2012
  • The organic memory device was made by the plasma polymerization method which was not the dry process but the wet process. The memory device consist of the styrene and MMA monomer as the insulating layer, MMA monomer as the tunneling layer and Au thin film as the memory layer which was fabricated by thermal evaporation method. The I-V characteristics of fabricated memory device got the hysteresis voltage of 27 V at 40/-40 V double sweep measuring conditions. At this time, the optimized structure was 7 nm of Au thin film as floating gate, 400 nm of styrene thin film as insulating layer and 30 nm of MMA thin film as tunneling layer. Therefore we got the charge trapping characteristics by the hysteresis voltage. From the paper, styrene indicated a good charge trapping characteristics better than MMA. In the future, we expect to make devices by using styrene thin film rather than Au thin film.

Progress of High-k Dielectrics Applicable to SONOS-Type Nonvolatile Semiconductor Memories

  • Tang, Zhenjie;Liu, Zhiguo;Zhu, Xinhua
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.4
    • /
    • pp.155-165
    • /
    • 2010
  • As a promising candidate to replace the conventional floating gate flash memories, polysilicon-oxide-nitride-oxidesilicon (SONOS)-type nonvolatile semiconductor memories have been investigated widely in the past several years. SONOS-type memories have some advantages over the conventional floating gate flash memories, such as lower operating voltage, excellent endurance and compatibility with standard complementary metal-oxide-semiconductor (CMOS) technology. However, their operating speed and date retention characteristics are still the bottlenecks to limit the applications of SONOS-type memories. Recently, various approaches have been used to make a trade-off between the operating speed and the date retention characteristics. Application of high-k dielectrics to SONOS-type memories is a predominant route. This article provides the state-of-the-art research progress of high-k dielectrics applicable to SONOS-type nonvolatile semiconductor memories. It begins with a short description of working mechanism of SONOS-type memories, and then deals with the materials' requirements of high-k dielectrics used for SONOS-type memories. In the following section, the microstructures of high-k dielectrics used as tunneling layers, charge trapping layers and blocking layers in SONOS-type memories, and their impacts on the memory behaviors are critically reviewed. The improvement of the memory characteristics by using multilayered structures, including multilayered tunneling layer or multilayered charge trapping layer are also discussed. Finally, this review is concluded with our perspectives towards the future researches on the high-k dielectrics applicable to SONOS-type nonvolatile semiconductor memories.

The GIDL Current Characteristics of P-Type Poly-Si TFT Aged by Off-State Stress (오프 상태 스트레스에 의한 에이징된 P형 Poly-Si TFT에서의 GIDL 전류의 특성)

  • Shin, Donggi;Jang, Kyungsoo;Phu, Nguyen Thi Cam;Park, Heejun;Kim, Jeongsoo;Park, Joonghyun;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.372-376
    • /
    • 2018
  • The effects of off-state bias stress on the characteristics of p-type poly-Si TFT were investigated. To reduce the gate-induced drain leakage (GIDL) current, the off-state bias stress was changed by varying Vgs and Vds. After application of the off-state bias stress, the Vgs causing GIDL current was dramatically increased from 1 to 10 V, and thus, the Vgs margin to turn off the TFT was improved. The on-current and subthreshold swing in the aged TFT was maintained. We performed a technology computer-aided design (TCAD) simulation to describe the aged characteristics. The aged-transfer characteristics were well described by the local charge trapping. The activation energy of the GIDL current was measured for the pristine and aged characteristics. The reduced GIDL current was mainly a thermionic field-emission current.

Application of Nanoroll-Type Ag/g-C3N4 for Selective Conversion of Toxic Nitrobenzene to Industrially-Valuable Aminobenzene

  • Devaraji, Perumal;Jo, Wan-Kuen
    • Journal of Environmental Science International
    • /
    • v.29 no.1
    • /
    • pp.95-108
    • /
    • 2020
  • Silver nanoparticles were loaded onto g-C3N4 (CN) with a nanoroll-type morphology (Ag/CN) synthesized using a co-polymerization method for highly selective conversion of toxic nitrobenzene to industrially-valuable aminobenzene. Scanning electron microscopy and high-resolution transmission electron microscopy (HRTEM) images of Ag/CN revealed the generation of the nanoroll-type morphology of CN. Additionally, HRTEM analysis provided direct evidence of the generation of a Schottky barrier between Ag and CN in the Ag/CN nanohybrid. Photoluminescence analysis and photocurrent measurements suggested that the introduction of Ag into CN could minimize charge recombination rates, enhancing the mobility of electrons and holes to the surface of the photocatalyst. Compared to pristine CN, Ag/CN displayed much higher ability in the photocatalytic reduction of nitrobenzene to aminobenzene, underscoring the importance of Ag deposition on CN. The enhanced photocatalytic performance and photocurrent generation were primarily ascribed to the Schottky junction formed at the Ag/CN interface, greater visible-light absorption efficiency, and improved charge separation associated with the nanoroll morphology of CN. Ag would act as an electron sink/trapping center, enhancing the charge separation, and also serve as a good co-catalyst. Overall, the synergistic effects of these features of Ag/CN improved the photocatalytic conversion of nitrobenzene to aminobenzene.

Effect of Annealing Temperature with Silver Nanoparticles Incorporation on the Electronic Structure of Poly (3, 4-ethylenedioxythiphene) : poly (styrenesulfonate) Film (은 나노입자가 함침된 Poly (3, 4-ethylenedioxythiphene) : poly (styrenesulfonate)필름의 전자 구조상태에 미치는 열처리효과 연구)

  • Wang, Seok-Joo;Lee, Cho-Young;Park, Hyung-Ho
    • Korean Journal of Materials Research
    • /
    • v.18 no.9
    • /
    • pp.503-506
    • /
    • 2008
  • The effect of silver nanoparticles (NPs) incorporation on the electronic properties of poly (3, 4-ethylenedioxythiphene) : poly(styrenesulfonate) (PEDOT : PSS) films was investigated. The surface of silver NPs was stabilized with trisodium citrate to control the size of silver NPs and prevent their aggregation. We obtained ca. 5 nm sized silver NPs and dispersed NPs in PEDOT : PSS solution. Sheet resistance, surface morphology, bonding state, and work function values of the PEDOT : PSS films were modified by silver NPs incorporation as well as annealing temperature. Sodium in silver NPs solution could lead to a decrease of work function of PEDOT : PSS; however, large content of silver NPs have an effect on the increase in work function, resulting from charge localization on the silver NPs and a decrease in the number of charge-trapping-related defects by chemical bond formation.