• Title/Summary/Keyword: Charge selectivity

Search Result 56, Processing Time 0.025 seconds

수소 중성입자빔을 이용한 실리콘 에칭

  • Kim, Dae-Cheol;Hong, Seung-Pyo;Kim, Jong-Sik;Park, Jong-Bae;O, Gyeong-Suk;Kim, Yeong-U;Yun, Jeong-Sik;Lee, Bong-Ju;Yu, Seok-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.278-278
    • /
    • 2011
  • 수소 중성입자빔을 이용한 silicon etching은 기존의 silicon etching 공정 가스(Fluorine이나 Chlorine 계열의 가스) 사용 시 배출되는 유해 가스로 인한 지구 온난화 방지 및 폐기물 처리에 추가적인 비용이 발생하지 않는 친환경 etching 공정이다. 본 연구에 사용된 수소 중성입자빔을 발생시키기 위한 플라즈마 소스는 낮은 압력에서 높은 플라즈마 밀도를 발생시킬 수 있는 ECR 플라즈마 소스를 사용하였으며 중성입자빔의 에너지를 조절할 수 있는 중성화판과 플라즈마로부터의 전하손상을 방지할 수 있어 charge free 공정을 가능하게 하는 Limiter로 구성되어 있다. 본 연구에서는 플라즈마 밀도, 공정 압력 그리고, 중성입자빔의 에너지를 조절하여 수소 중성입자빔을 이용한 poly-crystal silicon과 a-Si:H 간의 etch rate와 etching selectivity를 관찰하였다.

  • PDF

Current Status of Solar-energy-based CO2 Conversion to Fuels (태양에너지를 이용한 이산화탄소 전환 기술의 현황)

  • Kim, Ye Ji;Kim, Jong Min;Jung, Yeon Sik
    • Current Photovoltaic Research
    • /
    • v.5 no.4
    • /
    • pp.122-134
    • /
    • 2017
  • As a promising solution to global warming and growing energy demand, photocatalytic $CO_2$ conversion to useful fuels is widely studied to enhance the activity and selectivity of the $CO_2$ photoreduction reactions. In this review, an overview of fundamental aspects of the $CO_2$ reduction photocatalysts is provided. The recent development of the photocatalyst is also discussed, focusing on the mechanisms of light harvesting and charge transfer. Besides, this review sets its sight on inspiring new ideas toward a practical $CO_2$ conversion technology.

Enhancing Gas Response Characteristics of Mixed Metal Oxide Gas Sensors

  • Balamurugan, Chandran;Song, Sun-Ju;Kim, Ho-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.1-20
    • /
    • 2018
  • Semiconducting nanomaterials have attracted considerable interest in recent years due to their high sensitivity, selectivity, and fast response time. In addition, for portable applications, they have low power consumption, lightweight, simple in operation, a low maintenance cost. Furthermore, it is easy to manufacture microelectronic sensor structures with metallic oxide sensitive thin layers. The use of semiconducting metal oxides to develop highly sensitive chemiresistive sensing systems remains an important scientific challenge in the field of gas sensing. According to the sensing mechanisms of gas sensors, the overall sensor conductance is determined by surface reactions and the charge transfer processes between the adsorbed species and the sensing material. The primary goal of the present study is to explore the possibility of using semiconducting mixed metal oxide nanostructure as a potential sensor material for selective gases.

Fabrication of Electrically Switchable Bragg Gratings of The Transmission Mode From Holographic Polymer Dispersed Liquid Crystals

  • Kim, Kyung-Jin;Kim, Byung-Kyu;Kang, Young-Soo;Jang, Ju-Seog
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.3
    • /
    • pp.63-69
    • /
    • 2001
  • Holographic transmission gratings were performed by an Ar-laser( ${\lambda}$=514nm) intensity, the ratio fo LC contents to the surfactant. The addition of the surfactant to the LC and pre-polymer systems causes the droplet to maintain the ideal size at the high fraction(over 40wt%) of the LC contents that induce the films to be fabricated with high diffraction efficiency than that of no surfactant series. The image of these films was examined using a charge coupled device (CCD). We also studied the angular selectivity plots which support the important role in the multiplexer channel (MUX). Eventually, we showed the reconstructive optical image recorded in this transmission mode of HPDLCs.

  • PDF

Theoretical Studies on the Gas-Phase Wolff Rearrangement of Ketocarbenes

  • 김찬경;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.395-401
    • /
    • 1997
  • The substituent effects in the gas-phase rearrangement of carbenes to ketenes involved in the Wolff reaction have been investigated theoretically using the AM1 method. In the initial state, carbene, there is a relatively strong vicinal n-σ* interaction between the lone pair (n) and carbonyl group (σ*). In the bridged transition state (TS), electronic charge is transferred from the migrating ring (Z-ring) toward the nonmigrating ring (Y-ring). The carbenes are stabilized by an electron donor Y (δσY < 0) whereas the TS is stabilized by an electron acceptor Y (δσY > 0). Multiple regression analysis of log (kYZ/kHH)(=-δΔG≠/2.3RT) leads to a relatively large negative cross-interaction constant, ρYZ=-0.53, log (kYZ/kHH)=2.96 σY--1.40 σZ-0.53 σY-σZ reflecting an extensive structural change in the transition state due to the stabilization of the initial state by the vicinal n-σ* overlap. When the solvent (water) effects are accounted for by the SM2.1 model of the Cramer and Truhlar method, the magnitude of all the selectivity parameters, ρY-, ρZ and ρYZ (=-0.66) are increased.

Etch Characteristics of $SiO_2$ by using Pulse-Time Modulation in the Dual-Frequency Capacitive Coupled Plasma

  • Jeon, Min-Hwan;Gang, Se-Gu;Park, Jong-Yun;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.472-472
    • /
    • 2011
  • The capacitive coupled plasma (CCP) has been extensively used in the semiconductor industry because it has not only good uniformity, but also low electron temperature. But CCP source has some problems, such as difficulty in varying the ion bombardment energy separately, low plasma density, and high processing pressure, etc. In this reason, dual frequency CCP has been investigated with a separate substrate biasing to control the plasma parameters and to obtain high etch rate with high etch selectivity. Especially, in this study, we studied on the etching of $SiO_2$ by using the pulse-time modulation in the dual-frequency CCP source composed of 60 MHz/ 2 MHz rf power. By using the combination of high /low rf powers, the differences in the gas dissociation, plasma density, and etch characteristics were investigated. Also, as the size of the semiconductor device is decreased to nano-scale, the etching of contact hole which has nano-scale higher aspect ratio is required. For the nano-scale contact hole etching by using continuous plasma, several etch problems such as bowing, sidewall taper, twist, mask faceting, erosion, distortions etc. occurs. To resolve these problems, etching in low process pressure, more sidewall passivation by using fluorocarbon-based plasma with high carbon ratio, low temperature processing, charge effect breaking, power modulation are needed. Therefore, in this study, to resolve these problems, we used the pulse-time modulated dual-frequency CCP system. Pulse plasma is generated by periodical turning the RF power On and Off state. We measured the etch rate, etch selectivity and etch profile by using a step profilometer and SEM. Also the X-ray photoelectron spectroscopic analysis on the surfaces etched by different duty ratio conditions correlate with the results above.

  • PDF

중성빔 식각을 이용한 Metal Gate/High-k Dielectric CMOSFETs의 저 손상 식각공정 개발에 관한 연구

  • Min, Gyeong-Seok;O, Jong-Sik;Kim, Chan-Gyu;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.287-287
    • /
    • 2011
  • ITRS(international technology roadmap for semiconductors)에 따르면 MOS (metal-oxide-semiconductor)의 CD(critical dimension)가 45 nm node이하로 줄어들면서 poly-Si/SiO2를 대체할 수 있는 poly-Si/metal gate/high-k dielectric이 대두되고 있다. 일반적으로 metal gate를 식각시 정확한 CD를 형성시키기 위해서 plasma를 이용한 RIE(reactive ion etching)를 사용하고 있지만 PIDs(plasma induced damages)의 하나인 PICD(plasma induced charging damage)의 발생이 문제가 되고 있다. PICD의 원인으로 plasma의 non-uniform으로 locally imbalanced한 ion과 electron이 PICC(plasma induced charging current)를 gate oxide에 발생시켜 gate oxide의 interface에 trap을 형성시키므로 그 결과 소자 특성 저하가 보고되고 있다. 그러므로 본 연구에서는 이에 차세대 MOS의 metal gate의 식각공정에 HDP(high density plasma)의 ICP(inductively coupled plasma) source를 이용한 중성빔 시스템을 사용하여 PICD를 줄일 수 있는 새로운 식각 공정에 대한 연구를 하였다. 식각공정조건으로 gas는 HBr 12 sccm (80%)와 Cl2 3 sccm (20%)와 power는 300 w를 사용하였고 200 eV의 에너지로 식각공정시 TEM(transmission electron microscopy)으로 TiN의 anisotropic한 형상을 볼 수 있었고 100 eV 이하의 에너지로 식각공정시 하부층인 HfO2와 높은 etch selectivity로 etch stop을 시킬 수 있었다. 실제 공정을 MOS의 metal gate에 적용시켜 metal gate/high-k dielectric CMOSFETs의 NCSU(North Carolina State University) CVC model로 effective electric field electron mobility를 구한 결과 electorn mobility의 증가를 볼 수 있었고 또한 mos parameter인 transconductance (Gm)의 증가를 볼 수 있었다. 그 원인으로 CP(Charge pumping) 1MHz로 gate oxide의 inteface의 분석 결과 이러한 결과가 gate oxide의 interface trap양의 감소로 개선으로 기인함을 확인할 수 있었다.

  • PDF

Kinetics of the Solvolysis of 1-Adamantyl Fluoroformate under High Pressure (고압하에서 1-Adamantyl Fluoroformate의 가용매분해반응에 대한 속도론적 연구)

  • Kyong Jin Burm;Dennis N. Kevill;Kim Jong Chul
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.1
    • /
    • pp.3-9
    • /
    • 1993
  • Specific rates of solvolysis of 1-adamantyl fluoroformate in hydroxylic solvents have been measured by an electric conductivity method under various pressures. The activation parameters (${\Delta}V^{\neq}{_o},\;{\Delta}{\beta}^{\neq},\;{Delta}H^{\neq},\;{Delta}S^{\neq}$,/TEX>) and average pressure within the solvation-shell of activated complex (charge development) have been estimated from the rates. Also, the selectivities for the formation of solvolysis products in aqueous ethanol have been determined by response-calibrated GC. The values of ${\Delta}V^{\neq}{_o},\;and\;{\Delta}{\beta}^{\neq}$ are both negative, but ${Delta}H^{\neq}$ is positive and ${Delta}S^{\neq}$, is large negative. This behavior is discussed in terms of electrostriction of solvation. From these results, it could be postulated that the solvolysis of 1-adamantyl fluoroformate have two major reaction pathway.

  • PDF

Molecular Dynamics Simulation and Density Functional Theory Investigation for Thiacalix[4]biscrown and its Complexes with Alkali-Metal Cations

  • Hong, Joo-Yeon;Lee, Che-Wook;Ham, Si-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.453-456
    • /
    • 2010
  • The structural and energetic preferences of thiacalix[4]biscrown-5 with and without alkali metal ions ($Na^+$, $K^+$, $Rb^+$, and $Cs^+$) have been theoretically investigated for the first time using molecular dynamic (MD) simulations and density functional theory (MPWB1K/6-31G(d)//B3LYP/6-31G(d)) methods. The formation of the metal ion complex by the host is mainly driven by the electrostatic attraction between crown-5 oxygens and a cation together with the minor contribution of the cation-$\pi$ interaction between two facing phenyl rings around the cation. The computed binding energies and the atomic charge distribution analysis for the metal binding complexes indicate the selectivity toward a potassium ion. The theoretical results herein explain the experimentally observed extractability order by this host towards various alkali metal ions. The physical nature and the driving forces for cation recognition by this host are discussed in detail.

Canonical Transient Receptor Potential Channels and Their Link with Cardio/Cerebro-Vascular Diseases

  • Xiao, Xiong;Liu, Hui-Xia;Shen, Kuo;Cao, Wei;Li, Xiao-Qiang
    • Biomolecules & Therapeutics
    • /
    • v.25 no.5
    • /
    • pp.471-481
    • /
    • 2017
  • The canonical transient receptor potential channels (TRPCs) constitute a series of nonselective cation channels with variable degrees of $Ca^{2+}$ selectivity. TRPCs consist of seven mammalian members, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7, which are further divided into four subtypes, TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7. These channels take charge of various essential cell functions such as contraction, relaxation, proliferation, and dysfunction. This review, organized into seven main sections, will provide an overview of current knowledge about the underlying pathogenesis of TRPCs in cardio/cerebro-vascular diseases, including hypertension, pulmonary arterial hypertension, cardiac hypertrophy, atherosclerosis, arrhythmia, and cerebrovascular ischemia reperfusion injury. Collectively, TRPCs could become a group of drug targets with important physiological functions for the therapy of human cardio/cerebro-vascular diseases.