• Title/Summary/Keyword: Charge generation layer

Search Result 71, Processing Time 0.015 seconds

A study on the preparation of phthalocyanine optoelectric thin films (프탈로시아닌계 광전도성 유기박막의 제조에 관한 연구)

  • 박구범;조기선;이덕출
    • Electrical & Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.409-416
    • /
    • 1994
  • A double layered photoreceptor using phthalocyanine dye was made by dip-coating method. The under cutting layer(UCL) was coated with A1$\_$2/O$\_$3/ or polyamide, and the charge generation layer(CGL) was formed by .tau.-type metal-free phthalocyanine. The oxadiazole was used as a charge transport layer(CTL) and polycarbonate and poly(vinyl butyral) was employed as a host polymer. The .tau.-H$\_$2/Pc had an absorption peak around 780nm, which coincided with the emitting wavelengths of GaAlAs diode lasers. Maximum charge acceptance of CTL that gives thickness of 12.mu.m was -900V by corona charge of -6.0kV. In photo-induced discharge measurements, residual potential was less than -20V and sufficient for ordinary use, and sample films using of poly(vinyl butyral) was showed good charge retention. In printing test, drum that was employed polycarbonate as a host polymer showed the good print quality.

  • PDF

Emission Characteristics of Blue Fluorescence Tandem OLED with Materials of CGL (CGL의 재료에 따른 청색 형광 Tandem OLED의 발광 특성)

  • Kwak, Tea-Ho;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.210-214
    • /
    • 2014
  • We investigated emission characteristics of tandem organic light emitting devices (OLEDs) with p-type materials as charge generation layer. The tandem OLEDs were fabricated by using $MoO_x$, $WO_x$, C60 and HATCN as p-type material or not using p-type material for charge generation. When HATCN was used as p-type material, it showed high current density at low applied voltage, but increase of efficiency was small because of charge unbalance in emitting layer. In case of tandem OLED not using p-type material, applied voltage increased remarkably because of difficulty of hole injection. In case of $MoO_x$, $WO_x$ or C60 as p-type material, current emission efficiency increased greatly. In particular, current emission efficiency of tandem OLED using $MoO_x$ as p-type material increased up to 3 times than current emission efficiency of single OLED. The Commission Internationale de l'Eclairage (CIE) 1931 color coordinates were changed by overlapping of 504 nm emission wavelength. As a result, emission efficiency of tandem OLED improved compared with single OLED, but driving voltage also increased by increase of organic layer thickness.

Electrochemical Effectiveness Factors for Butler-Volmer Reaction Kinetics in Active Electrode Layers of Solid Oxide Fuel Cells

  • Nam, Jin Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.344-355
    • /
    • 2017
  • In this study, a numerical approach is adopted to investigate the effectiveness factors for distributed electrochemical reactions in thin active reaction layers of solid oxide fuel cells (SOFCs), taking into account the Butler-Volmer reaction kinetics. The mathematical equations for the electrochemical reaction and charge conduction process were formulated by assuming that the active reaction layer has a small thickness, homogeneous microstructure, and high effective electronic conductivity. The effectiveness factor is defined as the ratio of the actual reaction rate (or equivalently, current generation rate) in the active reaction layer to the nominal reaction rate. From extensive numerical calculations, the effectiveness factors were obtained for various charge transfer coefficients of 0.3-0.8. These effectiveness data were then fitted to simple correlation equations, and the resulting correlation coefficients are presented along with estimated magnitude of error.

Preparation and Photo Conducting Characteristics of Plasma Polymerized Organic Photorecepter (플라즈마 중합법에 의한 유기 감광체 박막의 제조와 광전도 특성)

  • 박구범
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.19-25
    • /
    • 1999
  • The photoreceptor films with double layer structure were prepared by the plasma polymerization and the dip-coating method. The blocking layer was coated with A1$_2$O$_3$ on the Al substrate and the charge generation layer was formed by H$_2$ phthalocyanine (H$_2$Pc). Poly 9-Vinylcarbazole was used as a charge transport layer. H$_2$Pc film prepared by the vacuum evaporation had absorption peaks on 613.6[nm] and 694.8[nm], and H$_2$Pc film prepared by the plasma polymerization had a dull peaks between 600 and 700[nm]. The surface potential of PVCz increased with increasing the applied voltage and the thickness of PVCz. The dark decay characteristic, the light decay time and the residual time increased with increasing the thickness of PVCz. The surface charge of PVCz of 15[${\mu}{\textrm}{m}$] thickness was 134[nc/$\textrm{cm}^2$] at the surface potential of -600[V] and the charge generation efficiency of H$_2$Pc was 0.034.

  • PDF

Dynamic Response of Charge Transfer and Recombination at Various Electrodes in Dye-sensitized Solar Cells Investigated Using Intensity Modulated Photocurrent and Photovoltage Spectroscopy

  • Kim, Gyeong-Ok;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.469-472
    • /
    • 2012
  • Intensity modulated photocurrent spectroscopy and intensity modulated photovoltage spectroscopy were investigated to measure the dynamic response of charge transfer and recombination in the standard, $TiCl_4$-treated and the combined scattering layer electrode dye-sensitized solar cells (DSSCs). IMPS and IMVS provided transit time ($\tau_n$), lifetime ($\tau_r$), diffusion coefficient ($D_n$) and effective diffusion length ($L_n$). These expressions are derived that generation, collection, and recombination of electrons in a thin layer nanocrystalline DSSC under conditions of steady illumination and with a superimposed small amplitude modulation. In this experimental, IMPS/IMVS showed that the main effect of $TiCl_4$ treatment is to suppress the recombination of photogenerated electrons, thereby extending their lifetime. And the Diffusion coefficient of combined scattering layer electrode is $6.10{\times}10^{-6}$ higher than that of the others, resulting in longer diffusion length.

A Tone Correction Halftone Method Based on Response Characteristic of Digital Printer (디지털 프린터의 출려특성기반 톤 보정 망점화)

  • 신지현
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.15 no.1
    • /
    • pp.71-83
    • /
    • 1997
  • In recent years, various kinds of organic photoreceptors have been used for copy machines based on electrophotography. Most of them are constructed into layered devices in which a photogeneration layer is separated from a charge transport layer. They are usually used with application of negative charges. Organic pigment have received considerable attention with phthalocyanine, squaraine, and azo compounds being used to construct zerograpgic photoreceptors with enhanced long wavelength sensitivity, residual potential and zerograpgic gain of squaraine photoconductor were measured from the photoinduced discharge curve. Most of synthesized squaraine derivative couldn`t use for CGM(charge generation material), but it knew that a part of one was able to use it within the possibility. A few appliance is used it know about dependence on CTM(charge transport material) of squaraine derivative. It could know that experiment`s result is 2.5-bis(4-N-N`-diethylaminophenyl)-1,3,4-oxadiazole(OXD) is the bestproduct.

  • PDF

Insertion of an Organic Hole Injection Layer for Inverted Organic Light-Emitting Devices

  • Park, Sun-Mi;Kim, Yun-Hak;Lee, Yeon-Jin;Kim, Jeong-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.379-379
    • /
    • 2010
  • Recent technical advances in OLEDs (organic light emitting devices) requires more and more the improvement in low operation voltage, long lifetime, and high luminance efficiency. Inverted top emission OLEDs (ITOLED) appeared to overcome these problems. This evolved to operate better luminance efficiency from conventional OLEDs. First, it has large open area so to be brighter than conventional OLEDs. Also easy integration is possible with Si-based driving circuits for active matrix OLED. But, a proper buffer layer for carrier injection is needed in order to get a good performance. The buffer layer protects underlying organic materials against destructive particles during the electrode deposition and improves their charge transport efficiency by reducing the charge injection barrier. Hexaazatriphenylene-hexacarbonitrile (HAT-CN), a discoid organic molecule, has been used successfully in tandem OLEDs due to its high workfunction more than 6.1 eV. And it has the lowest unoccupied molecular orbital (LUMO) level near to Fermi level. So it plays like a strong electron acceptor. In this experiment, we measured energy level alignment and hole current density on inverted OLED structures for hole injection. The normal film structure of Al/NPB/ITO showed bad characteristics while the HAT-CN insertion between Al and NPB greatly improved hole current density. The behavior can be explained by charge generation at the HAT-CN/NPB interface and gap state formation at Al/HAT-CN interface, respectively. This result indicates that a proper organic buffer layer can be successfully utilized to enhance hole injection efficiency even with low work function Al anode.

  • PDF

Emission Characteristics of Blue Fluorescence Tandem OLED Using MoOx (MoOx를 사용한 청색 형광 Tandem OLED의 발광 특성)

  • Kwak, Tea-Ho;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.3
    • /
    • pp.104-108
    • /
    • 2014
  • To improve emission efficiency of organic light emitting devices (OLEDs), we fabricated the tandem OLED of ITO / 2-TNATA / NPB / SH-1: 3 vol.% BD-2 / Bphen / Liq / Al / $MoO_x$ (X nm) / 2-TNATA / NPB / SH-1: 3 vol.% BD-2 / Bphen / Liq / Al structure. And emission properties of single OLED and tandem OLED with $MoO_x$ thickness as charge generation layer (CGL) were measured. The current emission efficiency and quantum efficiency of tandem OLED with $MoO_x$ of 3 nm thickness were improved compare with single OLED from 7.46 cd/A and 5.39% to 22.57 cd/A and 11.76%, respectively. In case of thicker or thinner than $MoO_x$ of 3~5 nm, the current emission efficiency and quantum efficiency were decreased, because balance of electron and hole in emission layer was not matching. The driving voltage was increased from 8 V of single OLED to 15 V of tandem OLED by thickness increase of OLED. As a result, it was possible to improve the emission efficiency of OLEDs by optimized $MoO_x$ thickness.

Emission Characteristics of Multi-Tandem OLED using MoOx with CGL (CGL 층으로 MoOx를 사용한 다중 적층구조 OLED의 발광 특성)

  • Kim, Ji-Hyun;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.3
    • /
    • pp.105-109
    • /
    • 2015
  • We studied emission characteristics of blue fluorescent multi-tandem OLEDs using $Al/MoO_x$ as charge generation layer(CGL). Threshold voltage for 2, 3, 4, and 5 units tandem OLEDs was 8, 11, 14 and 18 V, respectively. The threshold voltage in multi-tandem OLEDs was lower than multiple of 4 V for the single OLED. Maximum current efficiency and maximum quantum efficiency of single OLED were 7.6 cd/A and 5.5%. Maximum current efficiency for 2, 3, 4, and 5 units tandem OLEDs was 22.6, 31.4, 41.2, and 46.6 cd/A, respectively. Maximum quantum efficiency for 2, 3, 4, and 5 units tandem OLEDs was 11.8, 15.8, 21.8, and 25.6%, respectively. The maximum current efficiency and maximum quantum efficiency in multi-tandem OLEDs were higher than multiple of those for the single OLED. The intensity for 508 nm peak was changed and the peak wavelength was red shift by increase of tandem unit in electroluminescent emission spectra. These phenomena can be caused by micro-cavity effect with increasing of organic layer thickness.

A Basic Study on Electrification Phenomena of Synthetic Polymer Material (합성고분자재료의 대전현상에 관한 기초연구)

  • 이덕출;한상옥
    • 전기의세계
    • /
    • v.28 no.10
    • /
    • pp.48-54
    • /
    • 1979
  • The electrification phenomena of polymerized materials is governed by the competitive processes of the charge generation and the charge dissipation. In this paper, The charged particles were supplied on the naked upper surface of the polyethylene film from a point corona discharge with a screen electrode which controls the potential difference across the film. The charging current with the corona charging was found to be larger than that obtained with the electric charging on the MIM structure and the discharge current was found to flow in the same direction as that of the charging current. these results can suggest that the charge injection occurs from the interface between the polethylene surface and the accumulated charge layer, the injected charge are trapped and the space charge is established.

  • PDF