• Title/Summary/Keyword: Charge Reservoir

Search Result 27, Processing Time 0.019 seconds

The D/H Ratio of Water Ice at Low Temperatures

  • Lee, Jeong-Eun;Bergin, Edwin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.105.1-105.1
    • /
    • 2011
  • We present the modeling results of deuterium fractionation of water ice, $H_2$, and the primary deuterium isotopologues of $H3^+$ in the physical conditions associated with the star and planet formation process. We calculated the deuterium chemistry for a range of gas temperatures (Tgas~10-30 K) and ortho/para ratio (opr ) of $H_2$ based on state-to-state reaction rates and explore the resulting fractionation including the formation of a water ice mantle coating grain surfaces. We find that the deuterium fractionation exhibits the expected temperature dependence of large enrichments at low gas temperature, but only for opr-H2<0.01. More significantly the inclusion of water ice formation leads to large D/H ratios in water ice (${\geq}10^{-2}$ at 10 K) but also alters the overall deuterium chemistry. For T<20 K the implantation of deuterium into ices lowers the overall abundance of HD which reduces the efficiency of deuterium fractionation at high density. Under these conditions HD will not be the primary deuterium reservoir in the cold dense interstellar medium and $H3^+$ will be the main charge carrier in the dense centers of pre-stellar cores and the protoplanetary disk midplane.

  • PDF

Effects of Cd substitution on the superconducting properties of (Pb0.5Cu0.5-xCdx)Sr2(Ca0.7Y0.3)Cu2Oz

  • Lee, Ho Keun;Kim, Jin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.24-28
    • /
    • 2018
  • To understand the effects of Cd substitution for Cu, $(Pb_{0.5}Cu_{0.5-x}Cd_x)Sr_2(Ca_{0.7}Y_{0.3})Cu_2O_z$ (x = 0 ~ 0.5) compounds were synthesized and the structural and superconducting properties of the compounds were characterized. Resistivity data revealed that superconducting transition temperature rises initially up to x = 0.25 and then decreases as the Cd doping content increases. Room-temperature thermoelectric power decreases at first up to x = 0.25 and then increases with higher Cd doping content, indicating that the change in $T_c$ is mainly caused by the change in the hole concentration on the superconducting planes by the Cd doping. The non-monotonic dependence of the lattice parameters and the transition temperature with Cd doping content is discussed in connection with the possible formation of $Pb^{+2}$ ions and the removal of excess oxygen caused by Cd substitution in the charge reservoir layer. A correlation between transition temperature and c/a lattice parameter ratio was observed for the $(Pb_{0.5}Cu_{0.5-x}Cd_x)Sr_2(Ca_{0.7}Y_{0.3})Cu_2O_z$ system.

Dynamic Model of a Passive Air-Breathing Direct Methanol Fuel Cell (수동급기 직접 메탄올 연료전지의 동적 모델)

  • Ha, Seung-Bum;Chang, Ikw-Hang;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.33-36
    • /
    • 2008
  • The transient behavior of a passive air breathing direct methanol fuel cell (DMFC) operated on vapor-feeding mode is studied in this paper. It generally takes 30 minutes after starting for the cell response to come to its steady-state and the response is sometimes unstable. A mathematical dynamic one-dimensional model for simulating transient response of the DMFC is presented. In this model a DMFC is decomposed into its subsystems using lumped model and divided into five layers, namely the anodic diffusion layer, the anodic catalyst layer, the proton exchange membrane (PEM), the cathodic catalyst layer and the cathodic diffusion layer. All layers are considered to have finite thickness, and within every one of them a set of differential-algebraic governing equations are given to represent multi-components mass balance, such as methanol, water, oxygen and carbon dioxide, charge balance, the electrochemical reaction and mass transport phenomena. A one-dimensional, isothermal and mass transport model is developed that captures the coupling between water generation and transport, oxygen consumption and natural convection. The single cell is supplied by pure methanol vapor from a methanol reservoir at the anode, and the oxygen is supplied via natural air-breathing at the cathode. The water is not supplied from external source because the cell uses the water created at the cathode using water back diffusion through nafion membrane. As a result of simulation strong effects of water transport were found out. The model analysis provides several conclusions. The performance drop after peak point is caused by insufficiency of water at the anode. The excess water at the cathode makes performance recovery impossible. The undesired crossover of the reactant methanol through the PEM causes overpotential at the cathode and limits the feeding methanol concentration.

  • PDF

Landscape Design for the Rural Village - A Case Study of Naegokri, Yeohang-myeon, Haman-gun - (조경식재를 통한 농촌마을 경관조성에 관한 연구 - 함안군 여항면 내곡리를 사례로 -)

  • Kim, Sang-Bum;Lee, Seung-Joo;Rhee, Sang-Young
    • Journal of Korean Society of Rural Planning
    • /
    • v.14 no.1
    • /
    • pp.59-71
    • /
    • 2008
  • The landscape commonly refers to the appearance of the land, including its shape, texture, and colours. Among many factors contributing to the landscape, tree and plants factors playa significant role in rural landscape as a colours. Therefore the rural traditional theme village where had been designated under the rural traditional theme village since 2007 in Naegok-ri, Eohang-myeon, Haman-gun has planned to design the tree plant planning for creating a unique rural landscape. The landscape proposal for the new Rural Village in Naegokri, Yeohang-myeon, Haman-gun suggests three main strategies; 1) The riverside area and reservoir area adjoined forest was required to be prepared to offer organization waterside landscape and forest landscape through landscape planting and selecting trees i.e. able to reflect sense of the season that promote high quality values of landscape area in rural. 2) The area adjoined stable was required to strengthen the screen planting and buffer planting with multiple plant layer structure and trees of branches and leaves closeness, shrubs of beauty flowers in order to improve disamenity landscape and odours. 3) The rural traditional theme village adjoined entrance was required to open space such as multipurpose garden, specialized or themed garden which include Landmark factors and prepared to the space with the various theme and visual diversity in order to take charge of function as landmark characteristic in Naegok-ri, Eohang-myeon, Haman-gun, and so on. In conclusion, this winning principal purpose of this study is applied to basic tree plant model for sustainable rural landscape creation in rural areas by selecting beautiful landscape plants and the tree plant planning.

A Study on the Forest Vegetation and Soil-environmental Factors Affecting the Water Quality of Iwonch on Stream (이원천 수질에 미치는 삼림식생과 토양환경요인)

  • Bang, Je-Yong;Yang, Keum-Chul
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.2
    • /
    • pp.183-190
    • /
    • 2009
  • Characterization of the analysis of forest vegetation, soil environmental conditions and water quality were performed from March 2003 to March 2007. The two basins were characterized by cultivated area (Kaesim reservoir) and mountain area (Jangchan reservoir), and divided into eleven small basins, where dynamics of pollutants, forest vegetation and soil environmental conditions were surveyed. The vegetation can be divided into 10 types by $Z\ddot{u}rich$-Montpellier school's method. Pearson coefficients between vegetation type and water quality were correlated with dissolved oxygen (DO) in the Quercus variabilis community at the 5% level and total phosphorus (TP) in the Larix leptolepis plantation at the 1% level. Especially total phosphorous and total nitrogen increased in small basins where the proportion of cultivated and residential area increased. The analysis of influences of pollutant discharge on water quality showed that pollutant charge was very low in forest land area ($Y_{T-P}$=-0.0017X+0.2215, r=0.16, $Y_{COD}$=- 0.0395X+8.5051 r=0.47). The soil types of western area were comparatively simple, but those of eastern area were complicated with regosols, red-yellow soils, lithosoles, etc. The pH, total solid (TS) and volatile substance (VS) of the forest and agricultural land soils collected in each site were 5.4~6.9, 75.8~80.2%, and 3.80%~5.80%, respectively. According to the analytical result of soil environmental conditions, heavy metal contents fell short to the mean value of natural conditions. Runoff amount (Y) and depth of topsoil (X) were negatively correlated, $Y_{ron}=-1.0088X_{top}+35.378$ (r=0.68). The correlation was much lower in up-stream but much higher in down-stream, because permeation into soil particle was larger on down-stream due to its more or less gentle slope. Pearson coefficients between soil pH and water pH were statistically significant at 1% level.

A Study on the Efficient Management Plan of Water Distribution Reservoirs Facility Using 3D Geospatial Information (3D 공간정보를 이용한 배수지시설물의 효율적인 관리방안에 관한 연구)

  • Jung, In Hun;Ro, Young Suk;Choi, Yun Soo;Woo, Sang Yoon;Kim, Chong Mun
    • Spatial Information Research
    • /
    • v.20 no.6
    • /
    • pp.109-118
    • /
    • 2012
  • Recent increasement of metropolitan infrastructure due to rapid expansion and development of urban areas which caused complexity and diversification of management system demands higher cost and effort to manage and maintain the facilities. The reason why it requires continuous and systematic management by national government is that the infrastructure facilities takes important role as it is directly related to public's living. Thus this study suggests an efficient management plan for increasement of work efficiency, cost reduction, and time saving by introducing 3D geospatial information system for water distribution reservoirs which is managed by the Office of Waterworks Seoul Metropolitan Government. This study evaluates and quantifies the range of work improvement using the 3D GIS technology through carrying out a survey targeting people in charge of the Office of Waterworks Seoul Metropolitan Government and other 8 offices. From the result of the research, applying the 3D-GIS improves by 90.32%, 93.55%, and 91.61% in the area of work efficiency, cost reduction, and time saving respectively. Consequently, using 3D GIS in future management of infrastructure could be used as a way of producing base data which supports administrative decision making through statistical and case analysis based on continuous data management. Also it would contribute to improving work efficiency by improving management system through preventing data omission.

A Study on the Optimal Operation and Policy of the Boryeong Dam Diverion Pipe Line Using the SWAT Model (SWAT 모형을 이용한 보령댐 도수로 운영 방안 및 정책 연구)

  • Park, Bumsoo;Yoon, Hyo Jik;Hong, Yong Seok;Kim, Sung Pyo
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.546-558
    • /
    • 2020
  • While industrialization has provided in abundance, the pollution it creates has caused untold damage to the environment, increasing the frequency and severity of natural disasters through changes in global climate patterns. The World Risk Forum's (WEF) World Risk Report presented the results of a survey of experts from around the world detailing the most influential risk factors over the next decade. Notably, the failure to respond to climate change ranked first and the global water crisis third. The extreme drought in the western Chungnam province was unexpected in 2016. At the time, the water level of Boryeong Dam was drastically decreased due to receiving less than half the average recorded rainfall in the region that year. The Boryeong Dam diversion pipeline has the capacity to solve the water shortage problem between these two regions by providing water from Geumgang to the western part of Chungnam, including Boryeong City. Current weather trends suggest drought is likely to continue in western Chungnam, which uses the Boryeong Dam as an intake source. This makes it necessary to operate Boryeong Dam diversion pipeline in an efficient and effective manner. SWAT is a watershed scale model developed to predict the impact of land management practices on water. The SWAT model was used in this study to evaluate the adequacy of the Boryeong Dam diversion pipeline operational plan by comparing it to present Boryeong Dam diversion pipeline operation. By investigating the number of days required to reach each reservoir stage, we determined that the number of days required to reach the boundary stage was less than that of the current operation. This determination accounts for the caveats that the Boryeong Dam waterway was not operated and only one pump will be operated from October to May of next year. As our results suggest, the most stable operation scenario is to operate two pumps at all times. This can be accomplished by operating two pumps from the caution stage to increase the number of pumps whenever the stage is raised. In addition to the stable operation of the Boryeong Dam pipeline, policy considerations are required with regard to imposing a water use charge on users of the Boryeong Dam region.