• 제목/요약/키워드: Charge/discharge test

검색결과 201건 처리시간 0.029초

태양광-전기자동차의 충전·방전 시스템에 관한 연구 (A Carge-discharge System of a Solar-Electric Vehicle)

  • 심한섭
    • 한국기계가공학회지
    • /
    • 제18권1호
    • /
    • pp.78-84
    • /
    • 2019
  • Design of an electric power system on the solar-electric vehicle is very important because sunlight intensity is changed by weather conditions and road environments. Power output of solar module on the vehicle being changed by unsteady sunlight intensity. In this paper, design method of an electric power system are proposed to generate steady electric power output. The test results shows the electric power system are effective because the solar-electric vehicle have steady driving speed under unsteady sunlight conditions.

Fe와 galvanic couple된 알루미늄의 내식성에 미치는 마그네슘의 영향 (Effects of Mg on corrosion resistance of Al galvanically coupled to Fe)

  • 현영민;김희산
    • Corrosion Science and Technology
    • /
    • 제12권1호
    • /
    • pp.40-49
    • /
    • 2013
  • Effects of magnesium and pH on corrosion of aluminum galvanically coupled to iron have studied by using potentio- dynamic and static tests for polarization curves, Mott-Schottky test for analysis of semiconductor property, and GD-AES and XPS for film analysis. Pitting potential was sensitive to magnesium as an alloying element but not to pH, while passive current was sensitive to pH but not to magnesium. It was explained with, instead of point defect model (PDM), surface charge model describing that the ingression of chloride depends on the state of surface charge and passive film at film/solution interface is affected by pH. In addition, galvanic current of aluminum electrically coupled to iron was not affected by magnesium in pH 8.4, 0.2M citrate solution but was increased by magnesium at the solution of pH 9.1. The galvanic current at pH 9.1 increased with time at the initial stage and after the exposure of about 200 minute, decreased and stabilized. The behavior of the galvanic current was related with the concentration of magnesium at the surface. It agreed with the depletion of magnesium at the oxide surface by using glow discharge atomic emission spectroscopy (GD-AES). In addition, pitting potential of pure aluminum was reduced in neutral pH solution where chloride ion maybe are competitively adsorbed on pure aluminum. It was confirmed by the exponential decrease of pitting potential with log of [$Cl^-$] around 0.025 M of [$Cl^-$] and linear decrease of the pitting potential. From the above results, unlike magnesium, alloying elements with higher electron negativity, lowering isoelectric point (ISE), are recommended to be added to improve pitting corrosion resistance of aluminum and its alloys in neutral solutions as well as their galvanic corrosion resistance in weakly basic solutions.

XLPE/EPR 계면의 부분방전 패턴 분석을 위한 신경망 모형 (Neural Network Model for Partial Discharge Pattern Analysis of XLPE/EPR Interface)

  • 조경순
    • 한국컴퓨터산업학회논문지
    • /
    • 제6권2호
    • /
    • pp.357-364
    • /
    • 2005
  • 최근 들어 우리나라에서는 설치의 간편성과 높은 신뢰도를 가진 전력케이블의 사용이 증가하고 있다. 전력케이블은 출고 전에 IEEE std. 404-1993 시험을 거쳐 안정성을 확인하고 있지만 포설시 발생하는 접속부 내부의 결함으로 인하여 많은 문제가 발생하고 있다. 특히 불순물 혼입 또는 공극 발생시 고장율은 증가하게 된다 부분방전 검출은 포설 후 전력케이블의 상태를 관측할 수 있는 유용한 방법이다. 본 연구에서는 부분방전 특성을 평가하고자 케이블 접속재인 EPR과 케이블 절연체인 XPLE 사이에 인공 결함을 발생시킨 후 데이터 취득 시스템을 이용하여 $\Phi-q-n$ 특성을 검출하였으며, 부분방전의 정량적 해석을 위해 필요한 통계량을 계산하였으며, 신경망 모델을 적용하여 패턴 분석을 수행하여 $88\~96\%$의 구별이 가능하였다.

  • PDF

XLPE/EPR 계면의 부분방전 패턴 분석을 위한 신경망 모형 (Neural Network Model for Partial Discharge Pattern Analysis of XLPE/EPR Interface)

  • 조경순
    • 한국컴퓨터산업학회논문지
    • /
    • 제6권2호
    • /
    • pp.279-286
    • /
    • 2005
  • 최근 들어 우리나라에서는 설치의 간편성과 높은 신뢰도를 가진 전력케이블의 사용이 증가하고 있다. 전력케이블은 출고 전에 IEEE std. 404-1993 시험을 거쳐 안정성을 확인하고 있지만 포설시 발생하는 접속부 내부의 결함으로 인하여 많은 문제가 발생하고 있다. 특히 불순물 혼입 또는 공극 발생시 고장율은 증가하게 된다. 부분방전 검출은 포설 후 전력케이블의 상태를 관측할 수 있는 유용한 방법이다. 본 연구에서는 부분방전 특성을 평가하고자 케이블 접속재인 EPR과 케이블 절연체인 XPLE 사이에 인공 결함을 발생시킨 후 데이터 취득 시스템을 이용하여 $\Phi-q-n$ 특성을 검출하였으며, 부분방전의 정량적 해석을 위해 필요한 통계량을 계산하였으며, 신경망 모델을 적용하여 패턴 분석을 수행하여 $88\~96\%$의 구별이 가능하였다.

  • PDF

Li/$V_6O_{13}$ 2차전지의 제조 및 특성 (Preparation and Characteristics of Li/$V_6O_{13}$ Secondary Battery)

  • 문성인;정의덕;도칠훈;윤문수;염덕형;정목윤;박천준;윤성규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1992년도 추계학술대회 논문집
    • /
    • pp.136-140
    • /
    • 1992
  • The purpose of this research is to develop the lithium secondary battery. This paper describes the preparation, electrochemical properties of nontstoichiometric(NS)-$V_6O_{13}$ and characteristics of Li/$V_6O_{13}$ secondary battery. NS-$V_6O_{13}$ was prepared by thermal decomposition of $NH_4VO_3$ under Ar stream of 140ml/min~180ml/min flow rate. And then, this NS-$V_6O_{13}$ was used for cathode active material. Cathode sheet was prepared by compressing the composite of NS-$V_6O_{13}$, acetylene black(A.B) and teflon emulsion (T.E). Characteristics of the test cell are summarised as follows. Oxidation capacity of NS-$V_6O_{13}$ was about 20% less than its reduction capacity. A part of NS-$V_6O_{13}$ cathode active material showed irreversible reaction in early charge-discharge cycle. This phenomena seems to be caused by irreversible incoporation/discoporation of lithium cation to/from NS-$V_6O_{13}$ host. Discharge characteristics curve of Li/$V_6O_{13}$ cell showed 4 potential plateaus. Charge-discharge capacity was declined in the beginning of cycling and slowly increased in company with increasing of coulombic efficiency. Energy density per weight of $V_6O_{13}$ cathode material was as high as 522Wh/kg~765Wh/kg.

  • PDF

Synthesis of Multi-component Olivine by a Novel Mixed Transition Metal Oxalate Coprecipitation Method and Electrochemical Characterization

  • 박영욱;김종순;권혁조;서동화;김성욱;홍지현;강기석
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.37.1-37.1
    • /
    • 2010
  • The multi-component olivine cathode material, $LiMn_{1/3}Fe_{1/3}Co_{1/3}PO_4$, was prepared via a novel coprecipitation method of the mixed transition metal oxalate, $Mn_{1/3}Fe_{1/3}Co_{1/3}(C_2O_4){\cdot}2H_2O$. The stoichiometric ratio and distribution of transition metals in the oxalate, therefore, in the olivine product, was affected sensitively by the environments in the coprecipitation process, while they are the important factors in determining the electrochemical property of electrode materials with multiple transition metals. The effect of the pH, atmosphere, temperature, and aging time was investigated thoroughly with respect to the atomic ratio of transition metals, phase purity, and morphology of the mixed transition metal oxalate. The electrochemical activity of each transition metal in the olivine synthesized through this method clearly was enhanced as indicated in the cyclic voltammetry (CV) and galvanostatic charge/discharge measurement. Three distinctive contributions from Mn, Fe, and Co redox couples were detected reversibly in multiple charge and discharge processes. The first discharge capacity at the C/5 rate was $140.5\;mAh\;g^{-1}$ with good cycle retention. The rate capability test showed that the high capacity still is retained even at the 4C and 6C rates with 102 and $81\;mAh\;g^{-1}$, respectively.

  • PDF

독립형 태양광 발전소의 연 축전지 모니터링장치 개발 (A Monitoring Unit for Lead Storage Batteries in Stand Alone PV Generation Systems)

  • 문채주;김태곤;장영학;김의선;임정민
    • 한국태양에너지학회 논문집
    • /
    • 제29권2호
    • /
    • pp.1-7
    • /
    • 2009
  • Use of the PV(photovoltaic) generation system is increased in such areas as remote mountain places or islands at which electrical energy is not serviced. The stand alone PV system is required the power storage products such as battery, fly wheel and super capacitor. Several lead storage batteries are connected in series to get high voltages. The life of lead storage battery is shortened when over charge or over discharge takes place. So, it is needed to control batteries not to be overcharged or be discharged deeply. Voltage of each battery was ignored in former control methods in which overall voltage was used to control charge or discharge battery. In this study, the charging and discharging voltage variations of sealed lead storage batteries with l2V/l.2A were investigated step by step experiments. The results of the test show that one should consider and specify the state of each battery to prevent overcharge or deep discharge. With the basis of the experiments, we designed a monitoring unit to monitor battery voltages simultaneously using micro-controller. The unit measures voltage of 20 batteries simultaneously and displays data on the color LCD monitor with curved line graph. It also sends data to PC using the RS232C communication port. The designed unit was adapted to stand alone PV system with 1kW capacity and lead storage batteries are connected to the PV generation system. The number of lead storage batteries was 10 in series and 12V/250Ah each. Resistive load with 3kW was used for discharging.

비정질 실리콘 산화물을 이용한 리튬망간실리콘산화물의 합성 및 전기화학적 특성 평가 (Synthesis and Electrochemical Performance of Li2MnSiO4 for Lithium Ion Battery Prepared by Amorphous Silica Precusor)

  • 진연호;이근재;강이승;정항철;홍현선
    • 한국분말재료학회지
    • /
    • 제19권3호
    • /
    • pp.210-214
    • /
    • 2012
  • Mass production-capable $Li_2MnSiO_4$ powder was synthesized for use as cathode material in state-of-the-art lithium-ion batteries. These batteries are main powder sources for high tech-end digital electronic equipments and electric vehicles in the near future and they must possess high specific capacity and durable charge-discharge characteristics. Amorphous silicone was quite superior to crystalline one as starting material to fabricate silicone oxide with high reactivity between precursors of sol-gel type reaction intermediates. The amorphous silicone starting material also has beneficial effect of efficiently controlling secondary phases, most notably $Li_xSiO_x$. Lastly, carbon was coated on $Li_2MnSiO_4$ powders by using sucrose to afford some improved electrical conductivity. The carbon-coated $Li_2MnSiO_4$ cathode material was further characterized using SEM, XRD, and galvanostatic charge/discharge test method for morphological and electrochemical examinations. Coin cell was subject to 1.5-4.8 V at C/20, where 74 mAh/g was observed during primary discharge cycle.

25KJ 초전도 에너지 저장장치의 설계,제작 및 특성 시험 (A Study on the Design, Fabrication and Characteristics Test of 25KJ Superconducting Magnetic Energy Storage)

  • 홍원표;원종수;이송엽;이승원
    • 대한전기학회논문지
    • /
    • 제37권10호
    • /
    • pp.683-693
    • /
    • 1988
  • For the economical and reasonable operation of electric power system according to continual increase of electric power demand and decrease of load factor, the potential application of superconducting magnertic energy storage [SMES] with high efficiency and fast response in the electric utility is receiving attractive attension. In the light of this background, to confirm the basic principle of SMES, theoretical study, design technique and fabrication procedure for superconducting coil, current lead, cryostat, measuring and protection system of SMES are described in detail. Especially, a new design technique for superconducting coil and current lead is porposed and it was proved experimentally by the performance test of SMES which is developed for the first time in our country. At the peak operating current 200A, the maximum magnetic field amd stored energy of the coil are 3.52T and 2500J, espectively. The thermal and mechanical stability of 2500J SMES is also confirmed experimetally by its characteristics test, AC loss, protection system, charge and discharge test. The experimetal results show good characteristics of energy storage system.

  • PDF

상반전 기법으로 제조한 PVdF-HFP/(SiO2, TiO2) 고분자 전해질을 채용한 리튬금속 고분자 2차전지의 충방전 특성 (Charge-Discharge Characteristics of Lithium Metal Polymer Battery Adopting PVdF-HFP/(SiO2, TiO2) Polymer Electrolytes Prepared by Phase Inversion Technique)

  • 김진철;김광만
    • Korean Chemical Engineering Research
    • /
    • 제46권1호
    • /
    • pp.131-136
    • /
    • 2008
  • 용매 N-methyl-2-pyrrolidone(NMP)과 dimethyl acetamide(DMAc)를 각각 사용하고 물을 비용매로 사용하는 상반전 기법에 의해, 실리카($SiO_2$)와 티타니아($TiO_2$) 나노입자가 각각 충진된 poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) 고분자 전해질을 제조하고, 이를 고용량 양극재료인 $Li[Ni_{0.15}Co_{0.10}Li_{0.20}Mn_{0.55}]O_2$를 주성분으로 하는 양전극과 리튬금속 음전극 사이에 채용하는 리튬금속 고분자 2차전지를 제작하여 그 충방전 특성을 조사하였다. 고분자 전해질 제조에 사용한 용매에 상관없이 실리카 충진재의 함량이 40~50 wt%인 상반전막을 고분자 전해질로 적용하였을 때 가장 높은 방전용량(180 mAh/g)을 나타내었으며, 이 경우 대개 80 사이클까지 초기용량의 99% 정도의 지속성을 보이다가 그 이후 급격한 용량 감소를 보였다. 이 용량 감소는 상반전막이 보장하는 용량 유지능력이 더이상 발휘될 수 없는 상태로 고분자 전해질에 리튬 dendrite가 침적되었기 때문이라 생각된다.