• Title/Summary/Keyword: Charcot-Marie-Tooth Disease (CMT)

Search Result 22, Processing Time 0.015 seconds

The effect of rod domain A148V mutation of neurofilament light chain on filament formation

  • Lee, In-Bum;Kim, Sung-Kuk;Chung, Sang-Hee;Kim, Ho;Kwon, Taeg-Kyu;Min, Do-Sik;Chang, Jong-Soo
    • BMB Reports
    • /
    • v.41 no.12
    • /
    • pp.868-874
    • /
    • 2008
  • Neurofilaments (NFs) are neuronal intermediate filaments composed of light (NF-L), middle (NF-M), and heavy (NF-H) subunits. NF-L self-assembles into a "core" filament with which NF-M or NF-H co-assembles to form the neuronal intermediate filament. Recent reports show that point mutations of the NF-L gene result in Charcot-Marie-Tooth disease (CMT). However, the most recently described rod domain mutant of human NF-L (A148V) has not been characterized in cellular level. We cloned human NF-L and used it to engineer the A148V. In phenotypic analysis using SW13 cells, A148V mutation completely abolished filament formation despite of presence of NF-M. Moreover, A148V mutation reduced the levels of in vitro self-assembly using GST-NF-L (H/R) fusion protein whereas control (A296T) mutant did not affect the filament formation. These results suggest that alanine at position 148 is essentially required for NF-L self-assembly leading to subsequent filament formation in neuronal cells.

Quantitative Analysis of Electrophysiological Characteristics of CIDP and CMT Type 1: Sensory Nerve Research (CIDP와 CMT 1형의 전기생리학적 특성에 대한 정량 분석: 감각신경연구)

  • Kang, Ji-Hyuk
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.2
    • /
    • pp.151-157
    • /
    • 2021
  • Charcot-Marie-Tooth disease (CMT) is a slowly progressive hereditary degenerative disease and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an acquired immune-mediated disorder characterized by weakness and sensory deficits. The purpose of this study was to analyze and compare the electrophysiological characteristics observed in sensory nerve conduction studies (SNCS) of both diseases. A retrospective study of 65 patients with a diagnosis of CIDP (N=35) and CMT type I (N=30) was performed. This study analyzed No potentials ratio, distal compound nerve action potential (dCNAP) of various nerve types, and a correlation coefficient analysis of the sensory nerve conduction velocity (SNCV). As a result, I found that CMT 1 was more severe systemic demyelinating and axonal polyneuropathy better than CIDP (P<0.05). In a quantitative analysis of dCNAP and SNCV, especially sural nerve was the most severe nerve injury observed in both diseases. In correlation and scatter plot analysis, CMT 1 showed relatively high correlations compared to CIDP based on the correlation coefficient analysis (Fisher's Z test) of SNCV. The results of this study suggested that CMT 1 showed the slowness in SNCV, one of the characteristics of demyelinating polyneuropathy, and this slowing had a uniform pattern. In conclusion, electrophysiological characteristic of SNCS may be useful in the diagnosis and research between patients with CMT 1 and CIDP.