• Title/Summary/Keyword: Characterization ground electrode

Search Result 2, Processing Time 0.021 seconds

A Study on the Safety Characterization Grounding Design of the Inner Photovoltaic System (태양광 발전단지 내부 그리드의 안전 특성화 접지 설계에 관한 연구)

  • Kim, Hong-Yong;Yoon, Suk-Ho
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.130-140
    • /
    • 2018
  • Purpose: In this paper, we propose a design technique for the safety characterization grounding in the construction of the photovoltaic power generation complex which can be useful and useful as an alternative power energy source in our society. In other words, we will introduce the application of safety grounding for each application, which can improve and optimize the reliability of the internal grid from the cell module to the electric room in the photovoltaic power generation complex. Method: We analyze the earth resistivity of the soil in the solar power plant and use the computer program (CDEGS) to analyze the contact voltage and stratospheric voltage causing the electric shock, and propose the calculation and calculation method of the safety ground. In addition, we will discuss the importance of semi-permanent ground electrode selection in consideration of soil environment. Results: We could obtain the maximum and minimum value of ground resistivity for each of the three areas of the data measured by the Wenner 4 - electrode method. The measured data was substituted into the basic equation and calculated with a MATLAB computer program. That is, it can be determined that the thickness of the minimum resistance value is the most favorable soil environment for installing the ground electrode. Conclusion: Through this study, we propose a grounding system design method that can suppress the potential rise on the ground surface in the inner grid of solar power plant according to each case. However, the development of smart devices capable of accumulating big data and a monitoring system capable of real-time monitoring of seismic changes in earth resistances and grounding systems should be further studied.

Physical/Chemical Characterization of Ordinary Portland Cement/Ground Granulated Blast Furnace Slag Pastes Containing Low Carbon Steel as Reinforcements

  • Hwang, Jin-Ha
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.94-100
    • /
    • 2003
  • The interface between low carbon steel and blended cement pastes containing slag was investigated using impedance spectroscopy. In addition, the pastes were characterized by several analytical methods (XRD, EDX, electrode potential, pH and ICP). The electrical behavior of the interface in the blended slag systems is correlated to its corresponding pore solution chemistry and the products present in the interface. Passivation occurred at the paste/steel interfaces, in cement pastes up to containing from 0 to 75% slag content. 100% slag paste induced corrosion of the low carbon steel, which could be explained by the influence of sulfur on the system.