• Title/Summary/Keyword: Characteristics of rock mass

Search Result 315, Processing Time 0.02 seconds

Applicability of Pulse Tests to Estimate Transmissivity in Crystalline Rock (결정질 암반의 투수량계수 도출을 위한 펄스시험의 적용성 연구)

  • Park, Kyung-Woo;Park, Byeong-Hak;Ko, Nak-Youl;Ji, Sung-Hoon
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.223-235
    • /
    • 2020
  • In this study, pulse tests were undertaken at an underground research facility, as part of in-situ hydraulic tests, to derive the hydrogeological characteristics of crystalline rock. The applicability of pulse tests for estimating the transmissivity of a fractured rock mass was evaluated by comparing the results to those from a slug test. Results from the pulse and slug tests were very similar for the test section, with both tests indicating low transmissivity. A slight difference between the results of pulse and slug tests, however, was observed in the section with the transmissivity larger than 1 × 10-8 ㎡/s, which is likely due to the difference in the radii of influence of the tests. Furthermore, when the pulse test was conducted in permeable zones where transmissivity was larger than 1 × 10-7 ㎡/s, it was difficult to produce accurate results. This lack of accuracy was due to the rapid recovery of the hydraulic head in these permeable test zones. When performing pulse tests, it was important to accurately measure the pressure when valves were opened and closed in order to apply the head change in the test section. Although it is difficult to derive the hydrogeological characteristics from pulse tests in areas with high permeability, these tests can be used as an economical test method for identifying hydrogeological characteristics in a relatively short time, especially when deriving the transmissivity of rocks with low permeability.

Characteristics of Tunnel Convergence Behaviour based on Variation of Rock Mass Rating (암반 등급 변화에 따른 터널 내공 변위 거동 특설)

  • Kim, Kwang-Yeom
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.545-553
    • /
    • 2008
  • Face mapping and displacement monitoring during tunnel construction are the most influential information for the stability assessment of ground and around structures. Especially, the result of face mapping and displacement analysis is essential to the excavation and support design in NATM which is based on the drilling and blasting. However, there have not been so many studies to put those useful information into practice for decision-making process during construction. The study reviewed the tunnel behaviour based on the RMR rating and displacement monitoring when the geological condition of rock mass varies inevitably. The study analysed the crown settlement using convergence equation in order to compensate the disparity induced by the location and time of measurement and found a distinct relation between the geological condition and the line of influence. As a result of analysing the various parameters related to the tunnel convergence according to the geological condition, the study suggested the basic knowledge about the relation between face mapping and displacement behaviour of tunnel.

Geochemical Study on the Uranium Anomaly around the Shinbo Talc Mine (II) - In the Light of Isotopic Characteristics - (신보활석광산 주변에 형성된 우라늄 이상치에 관한 지화학적 연구 (II) -동위원소적 특성을 중심으로-)

  • 나춘기;박희열;박현주
    • Economic and Environmental Geology
    • /
    • v.33 no.5
    • /
    • pp.367-377
    • /
    • 2000
  • The purpose of this study is to elucidate the source of U anomaly formed in stream water of the drainage system around the Shinbo talc mine area based on the O, H, S and Sr isotopic characteristics of water masses and wall rocks. The ${\delta}$D and ${\delta}^{18}O$ of surface and ground waters show highly restricted range and plotted on the same meteoric water line, indicating that they are all originated from the meteoric water. The ${\delta}^{34}S$value of the ground water containing high U shows slightly negative (-0.2${\textperthousand}$) and quite distinct from those of the other surface and ground waters that are similar to those of wall rocks (>5.8${\textperthousand}$), indicating that they have a different S isotopic fractionation or less probably, source. The $^{87}Sr/^{86}{Sr}$ratios of water masses around the Shinbo talc mine area show a variable range from 0.724325 to 0.744928, but tend to increase with increasing U concentration of water mass. Although it is not possible to determine precisely the source rock of U anomaly formed in the hydrologic system around the Shinbo talc mine, the evidence obtained from the Sr isotopic compositions strongly suggests that coal schist and/or pegmatite vein could be the most likely candidate for the source rock.

  • PDF

Development of Discontinuity Orientation Measurement (DOM) Drilling System and Core Joint Analysis Model (Discontinuity Orientation Measurement (DOM) 시추장비 및 코어절리 해석모델 개발)

  • 조태진;유병옥;원경식
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.33-43
    • /
    • 2003
  • Field investigations of the orientations of discontinuity planes inside the borehole for designing the underground rock structures have been depend solely on the borehole image-taking techniques. But, borehole image-taking has to be processed after the completion of drilling operation and also requires the handling of highly expensive apparatus so that practical application is very restricted. In this study Discontinuity Orientation Measurement (DOM) drilling system and discontinuity analysis model RoSA-DOM are developed to acquire the reliable information of rock structure by analyzing the characteristics of joint distribution. DOM drilling system retrieves the rock core on which the reference line of pre-fixed drilling orientation is engraved. Coordinates of three arbitrary points on the joint surface relative to the position of reference line are assessed to determine the orientation of joint plane. The position of joint plane is also allocated by calculating the location of core axis at which joint plane is intersected. Then, the formation of joint set is analyzed by utilizing the clustering algorithm. Total and set spacings are calculated by considering the borehole axis as the scanline. Engineering applicability of in-situ rock mass around the borehole is also estimated by calculating the total and regional RQDs along the borehole axis.

A Study on the Stress Induced Brittle Failure around Openings with Cross-sectional Shape by Scaled Model Test and DEM Simulation (모형시험과 개별요소법을 이용한 단면 형상에 따른 공동 주변 취성파괴에 관한 연구)

  • Bae, Seong-Ho;Jeon, Seok-Won;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.389-410
    • /
    • 2007
  • For moderately jointed to massive rock masses, the failure and deformation behaviors around an excavated opening are absolutely influenced by the initial rock stress and strength of in-situ rock mass. The localized and progressive brittle failure around an opening does not mean whole collapse of an excavated opening. But, for many cases, it may induce temporary stopping of excavation works and reexamination of the current supporting system, which can result in delay of the entire construction works and additional construction cost. In this paper, the characteristics of the brittle failure around an opening with stress level and tunnel shape was studied by the biaxial compressive test using scaled specimen and by the numerical simulation with $PFC^{2D}$. The biaxial test results were well coincided with the stress induced failure patterns around the excavated openings observed and monitored in the in-situ condition. For the circular part of the opening wall, the stress induced cracks initially occurred at the wall surface in the direction of the minimum principal stress and contributed to the localized notch shaped failure region having a certain range of angle. But for the corner and straight part of the opening wall, the cracks initiated at sharp corners were connected and coalesced each other and with existing micro cracks. Further they resulted in a big notch shaped failure region connecting two sharp corners.

Reflectance of Geological Media by Using a Field spectrometer in the Ungsang Area, Kyungsang Basin

  • Kang, Kyung-Kuk;Song, Kyo-Young;Ahn, Chung-Hyun;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.2
    • /
    • pp.165-181
    • /
    • 2001
  • Using a field spectrometer having a spectral range of 0.4$\mu\textrm{m}$~2.5$\mu\textrm{m}$ with a spectral resolution of 1nm, the researchers measured the reflectance of granite, andesitic rocks, sedimentary rocks, and pyrophyllite ore in the Ungsang area, Kyungsang Basin, South Korea. Spectral characteristics of the geological media were investigated from the analysis. The in-situ measured sites were selected in well exposed rock outcrops. In case of unfavorable weather conditions, rocks were sampled and remeasured under natural solar condition. The reflectance of field data was measurd at three sistes for granite, six sites for andesitic rock three sites for sedimentary rocks, and two sites for pyrophyllite ore. The vibrational absorption bands for pyrophyllite are detected in the spectral range of 2.0$\mu\textrm{m}$~2.5$\mu\textrm{m}$. The absorption band for granites in study area is not distinctive. The reflectance measured under normal field conditions showed strong absorption at wavelengths of 1.4$\mu\textrm{m}$ and 1.9$\mu\textrm{m}$ due to the effect of moisture in the atmosphere. After the bands of 1.4$\mu\textrm{m}$ and 1.9$\mu\textrm{m}$ were removed, Hull Quotient method was applied to characterize absorption bands. The reflectances of field data were calculated to estimate the band ratio corresponding to the Landsat TM and EOS Terra ASTER. The researchers suggest here that the TM band2, band3, band4, and band7 or ASTER band2, band3, band4, and band9 are the best combination for discriminating outcrops. The researchers tested and demonstrated using a Landsat TM image in the study area. For geologic applications, decorrelation stretch is also an effective tool to enhance the exposed rock mass in images.

Case Study on Application of Geophysical Survey in the Weathered Slope including Core Stones (핵석을 포함하는 풍화사면에서의 지구물리탐사 적용사례 연구)

  • Hong, Won-Pyo;Kim, Jae-Hong;Ro, Byung-Don;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.89-98
    • /
    • 2009
  • Existence of core stone at the inside of the Rock mass is reacting as unstable element. In particular, in case of the cut slope, even when it is not exposed, slope's discontinuity increases or strength level decreases depending on the difference in the weathering grade when it comes to the core stone, and reacts as an important element of the slope movement such as slope's rock fall or collapse. As for the slope that is subject to study, incision was completed after 20 years or so, and parts of the slope reinforcement was completed, but frequent rock fall occurs despite small amount of rainfall, and permanent stability measures are urgent. Refractional seismic survey and geological survey results were compared and analyzed, and reliability was improved by complementing the two survey methods, and stereo-graphic projection using DIPS program was conducted to analyze the characteristics of oore stone in the weathered soil slope.

Thermohydromechanical Stability Study on the Joint Characteristics and Depth Variations in the Region of an Underground Radwaste Repository (절리 발달 특성 및 심도 변화에 의한 방사성폐기물 처분장 주변영역에서의 열수리역학적 안정성 연구)

  • Kim, Jhinwung;Daeseok Bae;Park, Chongwon
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.153-168
    • /
    • 2003
  • The objective of this present study is to understand long term(500 years) thermohydromechanical interaction behavior in the vicinity of a repository cavern on the joint location and repository depth variations. The model includes a saturated discontinuous granitic rock mass, PWR spent nuclear fuel in a disposal canister surrounded with compacted bentonite inside a deposition hole, and mixed bentonite backfilled in the rest of the space within a repository cavern. It is assumed that two joint sets exist within the model. Joint set 1 includes joints of 56$^{\circ}$ dip angle, spaced at 20 m, and joint set 2 is in the perpendicular direction to joint set 1 and includes joints of 34$^{\circ}$ dip angle, spaced at 20 m. In order to understand the behavior change on the joint location variations, 5 different models of 500m in depth are analyzed, and additional 3 different models of 1000 m in depth are analyzed to understand the effect of depth variation.

A Study on Shear Strength under Constant Normal Load Conditions by Using 3DEC (3DEC을 이용한 일정수직하중 조건에서의 전단강도에 관한 연구)

  • Noh, Young-Mok;Mun, Hong-Ju;Kim, Ki-Ho;Jang, Won-Yil
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.46-54
    • /
    • 2014
  • Direct shear tests have been initiated to understand the characteristics of joints which crucially affect the stability of rock mass. In this research, numerical approach in direct shear tests has been initiated using 3DEC on the basis of 3D distinct element method. Normal loads were altered in four different levels on artificial joint tests depending on the sawtooth angle and strengths on constant normal stress conditions, measuring the peak shear strength according to the direct shear tests under laboratory condition. Also results obtained from mechanical properties through laboratory test were used to perform numerical modeling, and shear strength obtained from the modeling was used to compare with laboratory direct shear test. As a result numerical analysis from distinct element method can simulate well on the shear behavior of rockmass.

A Study on the Applicability of Machine Learning Algorithms for Detecting Hydraulic Outliers in a Borehole (시추공 수리 이상점 탐지를 위한 기계학습 알고리즘의 적용성 연구)

  • Seungbeom Choi; Kyung-Woo Park;Changsoo Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.561-573
    • /
    • 2023
  • Korea Atomic Energy Research Institute (KAERI) constructed the KURT (KAERI Underground Research Tunnel) to analyze the hydrogeological/geochemical characteristics of deep rock mass. Numerous boreholes have been drilled to conduct various field tests. The selection of suitable investigation intervals within a borehole is of great importance. When objectives are centered around hydraulic flow and groundwater sampling, intervals with sufficient groundwater flow are the most suitable. This study defines such points as hydraulic outliers and aimed to detect them using borehole geophysical logging data (temperature and EC) from a 1 km depth borehole. For systematic and efficient outlier detection, machine learning algorithms, such as DBSCAN, OCSVM, kNN, and isolation forest, were applied and their applicability was assessed. Following data preprocessing and algorithm optimization, the four algorithms detected 55, 12, 52, and 68 outliers, respectively. Though this study confirms applicability of the machine learning algorithms, it is suggested that further verification and supplements are desirable since the input data were relatively limited.