• Title/Summary/Keyword: Characteristics of rock

Search Result 1,884, Processing Time 0.023 seconds

A Parametric Study for Jointed Rock Slope Using FEM (절리 암반사면에서의 인자효과에 의한 유한요소 해석의 타당성 검토)

  • Lee, Jin-A;Chung, Chang-Hee;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.97-102
    • /
    • 2007
  • Though the stability analysis of soil slopes widely employs the limit equilibrium method, the study on the jointed rock slopes must consider the direction of joint and the characteristics of Joint at the same time. This study analyzes the result of the change in the factors which show the characteristics of discontinuity and the shape factor of rock slopes, and so on, in an attempt to validate the propriety as to the interpretation of jointed rock slope stability which uses the general finite element program. First, the difference depending on the flow rules was compared, and the factor effect study was conducted. The selected independent variables included the direction of joint which displays the mechanical characteristics of discontinuity, adhesive cohesion, friction angle, the inclination and height of rock slope which reveal the shape of slope and surcharge load. And the horizontal displacement was numerically interpreted at the 1/3 point below the slope, a dependent variable, to compare the relative degree of factor effects. The findings of study on factor effects led to the validation that the result of horizontal displacement for each factor satisfied various engineering characteristics, making it possible to be applied to stability interpretation of jointed rock slope. A modelling is possible, which considers the application of the result of real geotechnical surveys & laboratory studies and the non-linear characteristics when designing the rock slope. In addition, the stress change which may result from the natural disaster, such as precipitation, and the construction, can be expressed. Furthermore, as the complicated rock condition and the ground supporting effect can be considered through FEM, it is considered to be very useful in making an engineering decision on the cut-slope, reinforcement and so on.

Deformation Characteristics of Artificially Fracture Joins of Granite under Normal and Shear Loading (수직 및 전단하중하에서 화강암 인공절리의 변형특성)

  • 김영근;이희근
    • Tunnel and Underground Space
    • /
    • v.3 no.2
    • /
    • pp.142-151
    • /
    • 1993
  • In this study, the deformation characteristics of atrtificially fractured joints of granite under normal and shear loading were investigated. To obtain the characteristics of joint deformation, compression and shear tests were performed in the laboratory on three different sizes of rock specimens. The rock used in the experimens was Iksan granite. Joints were produced artificially by fracturing using the apparatus for generating extension-joint. Joint normal deformability was studied by conducting cyclic loading tests on the joints. Joint closure varied non-linearly with normal stress through cyclic loadings. As normal stress increased, the joints gradually reached a state of maximum joint closure. The relation between normal stress and joint closure for mated and unmated joints was well described by the hyperbolic and exponential function, respectively. Joint shear deformability was studied by performing direct shear tests under normal stresses on the joints. it was shown that the behaviour in the prepeak range was non-linear and joint shear stiffness depended on the size of specimen and the normal stress.

  • PDF

The Variation of Sedimentary Rock Strength due to Weathering (풍화에 따른 퇴적암의 강도 변화)

  • 배우석;이봉직;오세욱;이종규
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.89-93
    • /
    • 2003
  • The failure of rock slopes were influenced by weathering, which causes change in the shear strength. The weathering is also directly related to slaking and swelling characteristics. In the paper, the core of diameter loom was obtained by digging on rock slope of Kong-ju in Korea and then EDX(Energy Dispersive X-ray spectrometer) analysis was carried out to verified element of chief rock-forming minerals. Uniaxial compression tests, slaking tests, and point load test are performed to study engineering characteristics of conglomerate and red shale. As a results of slaking test, slaking index of conglomerate indicate range of 85.11-99.58 and shale indicate 58.37-99.23. Therefore, it is recognized that the resistance of shale to weathering decreases in shallow depth and it greatly influences the strength of rock. The result of uniaxial compression test and Point load test show that the strength of sedimentary such as conglomerate and red shale has an influence on both weathering and saturation.

A Study on the Failure Characteristics for the Rock Slopes (Centering Around Jungang Highway) (암반사면의 붕괴특성에 관한 연구(중앙고속도로를 중심으로))

  • Kim, Jong-Ryeol;Lee, Jin-Su;Hwang, Pung-Ju;Lee, Yong-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.765-776
    • /
    • 2005
  • As a result of industrial advancement and land development, a number of highway slopes have been gradually formed and numerous problems related to their stability have been frequently caused. Generally, major factors for rock slope stability are lithology, slope inclination, slope height, degree of weathering, precipitation, condition of groundwater and so onl. Many complex factors are mostly involved in the collapse of rock slopes. In this study, a database for 94 collapsed Jungang highway slopes were set up using GIS program through literature search, site investigation, geological map and Korea tectonic province map. The analyses for the collapsed factor including sort of rock(by origin), tectonic province, highway direction, slope gradient and direction, degree of weathering, slope height were carried.

  • PDF

The mechanism of rockburst-outburst coupling disaster considering the coal-rock combination: An experiment study

  • Du, Feng;Wang, Kai;Guo, Yangyang;Wang, Gongda;Wang, Liang;Wang, Yanhai
    • Geomechanics and Engineering
    • /
    • v.22 no.3
    • /
    • pp.255-264
    • /
    • 2020
  • With the ongoing development of deep mining of coal resources, some coal mine dynamic disasters have exhibited characteristics of both coal-gas outbursts and rockbursts. Therefore, research is required on the mechanism of rockburst-outburst coupling disaster. In this study, the failure characteristics of coal-rock combination structures were investigated using lab-scale physical simulation experiments. The energy criterion of the rockburst-outburst coupling disaster was obtained, and the mechanism of the disaster induced by the gas-solid coupling instability of the coal-rock combination structure was determined. The experimental results indicate that the damage of the coal-rock structure is significantly different from that of a coal body. The influence of the coal-rock structure should be considered in the study of rockburst-outburst coupling disaster. The deformation degree of the roof is controlled by the more significant main role of the gas pressure and the difference in the strength between the rock body and the coal body. The outburst holes and spall characteristics of the coal body after the failure of the coal-rock structure are strongly affected by the difference in strength between the roof and the coal body. The research results provide an in-depth understanding of the mechanism of rockburst-outburst coupling disasters in deep mining.

The Analysis of GIS DB for the Evaluation of Turbid Water Considering Spatial Characteristics of River Channel (하천의 공간적 특성을 고려한 탁수평가 GIS DB 분석)

  • Park Jin-Hyeog;Lee Geun-Sang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • Andong and Imha reservoir adjoins each other, but turbid water shows too much different when it rains. The characteristics of geological rock in basin and agricultural area around river boundary are pointed out as the major reason of turbid water of Imha reservoir. This study analyzed rock type of topsoil layer using soil map by National Institute of Agricultural Science and Technology (NIAST). Among rock types, sedimentary rock affects on the occurrence of turbid water. In the analysis of sedimentary rock type, the distribution of sedimentary rock of Imha basin shows 1.87 times higher than that of Andong basin. Also, the distribution of sedimentary rock of Imha basin shows higher than that of Andong basin within 1,600m from river channel in according to the buffer zone of river boundary. And Agricultural area of Imha basin shows higher than that of Andong basin in analysis of land cover within 1,600 m from river channel. As this agricultural characteristics of Imha basin, cover management factor of Imha basin represents more higher that that of Andong basin.

Characteristics of Rock Slope Joint Using UAV (무인항공기를 활용한 암반비탈면 절리 특성 연구)

  • Kim, Yeon-Kyu;Yoon, Won-Sub;Kim, Seung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.883-890
    • /
    • 2021
  • In this study, joint analysis was conducted on the rock slope by aerial surveying using UAV. Aerial photos were taken using UAV to measure the directionality of the rock slope exposed to the site, and the directionality of the joint was analyzed using the photographed photos. UAV photography was taken under conditions of 90% overlap and an altitude of 50m. The photographing path was measured in the horizontal, vertical, and oblique directions based on the slope, and the joint characteristics were analyzed. Aerial surveying research on the joint directionality analysis of rock slopes is still incomplete, and the method for accurate joint directionality analysis is not presented strategically, so it is difficult to apply it in design. Through the results of this study, we would like to propose an flight photographing technique for the investigation of rock joints. As a result of the study, in the case of the joint investigation of the rock slope using UAV, it was necessary to change conditions such as altitude, aerial photography route, and overlap according to the size of the joint according to the site conditions.

Study on correlation of acoustic emission and plastic strain based on coal-rock damage theory

  • Jin, Peijian;Wang, Enyuan;Song, Dazhao
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.627-637
    • /
    • 2017
  • The high positive correlation between plastic strain of loaded coal-rock and AE (acoustic emission) characteristic parameter was studied and proved through AE experiment during coal-rock uniaxial compression process. The results show that plastic strain in the whole process of uniaxial compression can be gained through the experiment. Moreover, coal-rock loaded process can be divided into four phases through analyzing the change of the plastic strain curve : pressure consolidation phase, apparent linear elastic phase, accelerated deformation phase, rupture and development phase, which corresponds to conventional elastic-plastic change law of loaded coal-rock. The theoretical curve of damage constitutive model is in high agreement with the experimental curve. So the damage evolution law of coal rock damage can be indicated by both acoustic emission and plastic strain. The results have great academic and realistic significance for further study of both AE signal characteristics during loaded coal-rock damaged process and the forecasting of coal-rock dynamic disasters.

Whole-body Vibration Exposure of Drill Operators in Iron Ore Mines and Role of Machine-Related, Individual, and Rock-Related Factors

  • Chaudhary, Dhanjee Kumar;Bhattacherjee, Ashis;Patra, Aditya Kumar;Chau, Nearkasen
    • Safety and Health at Work
    • /
    • v.6 no.4
    • /
    • pp.268-278
    • /
    • 2015
  • Background: This study aimed to assess the whole-body vibration (WBV) exposure among large blast hole drill machine operators with regard to the International Organization for Standardization (ISO) recommended threshold values and its association with machine- and rock-related factors and workers' individual characteristics. Methods: The study population included 28 drill machine operators who had worked in four opencast iron ore mines in eastern India. The study protocol comprised the following: measurements of WBV exposure [frequency weighted root mean square (RMS) acceleration ($m/s^2$)], machine-related data (manufacturer of machine, age of machine, seat height, thickness, and rest height) collected from mine management offices, measurements of rock hardness, uniaxial compressive strength and density, and workers' characteristics via face-to-face interviews. Results: More than 90% of the operators were exposed to a higher level WBV than the ISO upper limit and only 3.6% between the lower and upper limits, mainly in the vertical axis. Bivariate correlations revealed that potential predictors of total WBV exposure were: machine manufacturer (r = 0.453, p = 0.015), age of drill (r = 0.533, p = 0.003), and hardness of rock (r = 0.561, p = 0.002). The stepwise multiple regression model revealed that the potential predictors are age of operator (regression coefficient ${\beta}=-0.052$, standard error SE = 0.023), manufacturer (${\beta}=1.093$, SE = 0.227), rock hardness (${\beta}=0.045$, SE = 0.018), uniaxial compressive strength (${\beta}=0.027$, SE = 0.009), and density (${\beta}=-1.135$, SE = 0.235). Conclusion: Prevention should include using appropriate machines to handle rock hardness, rock uniaxial compressive strength and density, and seat improvement using ergonomic approaches such as including a suspension system.

Development of Database System(DB/SLOPE) for Management of Cut Slope in Highway (고속도로 절토사면 관리를 위한 데이타베이스 프로그램 개발)

  • 유병옥;황영철
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.206-216
    • /
    • 2001
  • Many failures in cut slopes occur during and following road construction. Failures are caused, in part, by a lack of understanding of the characteristics of rock mass including its geologic structure. The stability of rock slopes is closely related to factors that include the type of rock, development of geological structures, weathering, characteristics of rock, and the shape of the geologic features. Therefore, it is very important to consider these characteristics of rock mass in the evaluation of rock slope stability. In spite of investigation from many slope failures, these information data were not systematically stored and not efficiently utilized. In this study, a Database system named DB/SLOPE was developed using Oracle for systematic management of cut slopes. The developed database system can be used to estimate of slope stability and to predict of slope failure.

  • PDF