Sound event detection is one of the research areas to model human auditory cognitive characteristics by recognizing events in an environment with multiple acoustic events and determining the onset and offset time for each event. DCASE, a research group on acoustic scene classification and sound event detection, is proceeding challenges to encourage participation of researchers and to activate sound event detection research. However, the size of the dataset provided by the DCASE Challenge is relatively small compared to ImageNet, which is a representative dataset for visual object recognition, and there are not many open sources for the acoustic dataset. In this study, the sound events that can occur in indoor and outdoor are collected on a larger scale and annotated for dataset construction. Furthermore, to improve the performance of the sound event detection task, we developed a dual CNN structured sound event detection system by adding a supplementary neural network to a convolutional neural network to determine the presence of sound events. Finally, we conducted a comparative experiment with both baseline systems of the DCASE 2016 and 2017.
Future automobiles are evolving into movable living spaces capable of eco-friendly autonomous driving. The role of electrically processing, controlling, and commanding various information in the vehicle is essential. It is expected that the automotive semiconductor will play a key role in the future automobile such as self-driving and eco-friendly automobile. In order to foster the automotive semiconductor industry, it is necessary to grasp technology trends and to acquire technology and quality that reflects the requirements in advance, thereby achieving technological innovation with industrial competitiveness. However, there is a lack of systematic analysis of technology trends to date. In this study, we analyzed the technology trends of automotive semiconductors using patent analysis and topic model, and confirmed technologies such as electric cars, driving assistance, and digital manufacturing. The technology trends showed that element technology and technical characteristics change according to technology convergence, market needs, and government regulations. Through this research, it is expected that it will help to make R&D policy for automotive semiconductor industry and to make decision for industrial technology strategy establishment. In addition, it is expected that it will be used effectively in detail research direction and patent strategy establishment by providing detailed classification of technology and trend analysis result of technology.
Jo, Young Hoon;Lee, Chan Hee;Yoo, Ji Hyun;Kang, Myeong Kyu;Kim, Duk Mun
Korean Journal of Heritage: History & Science
/
v.45
no.3
/
pp.174-193
/
2012
This study focused on distribution ratio of stone properties based on material characteristic analysis, provenance presumption and transportation route interpretation of the Sungnyemun stone block foundation. The stone block foundation is composed of pinkish granite (56.0%), reddish granite (4.5%) and leucocratic granite (26.2%) of original stones and pinkish granite of new stones(13.3%). The rock-forming minerals for granites are consisted mainly of quartz, alkali-feldspar, plagioclase and biotite, and are similar geochemical evolution trend of major, rare earth, compatible and incompatible elements. Therefore, it is clear that the rocks are genetically same origin. As a result of magnetic susceptibility measurement, the pinkish and reddish granite of original stones and pinkish granite of new stones showed normal distribution around about 4.00(${\times}10^{-3}SI\;unit$). But the leucocratic granite of original stones were confirmed ilmenite series under about 1.00(${\times}10^{-3}SI\;unit$). As a result of provenance interpretation and transportation route analysis based on the petrological results, the provenance of pinkish granite and reddish granite of original stones are presumed the north slope in Namsan mountain and Naksan mountain. Also, the leucocratic granite of original stones and the pinkish granite of new stones are strongly possible furnished from the south and north slope in Namsan mountain and Naksan mountain, respectively.
The World Health Organization (WHO) and other government agencies aroundthe world have warned against antibiotic-resistant bacteria due to abuse of antibiotics and are strengthening their care and monitoring to prevent infection. However, it is highly necessary to develop an expeditious and accurate prediction and estimating method for preemptive measures. Because it takes several days to cultivate the infecting bacteria to identify the infection, quarantine and contact are not effective to prevent spread of infection. In this study, the disease diagnosis and antibiotic prescriptions included in Electronic Health Records were embedded through neural embedding model and matrix factorization, and deep learning based classification predictive model was proposed. The f1-score of the deep learning model increased from 0.525 to 0.617when embedding information on disease and antibiotics, which are the main causes of antibiotic resistance, added to the patient's basic information and hospital use information. And deep learning model outperformed the traditional machine hospital use information. And deep learning model outperformed the traditional machine learning models.As a result of analyzing the characteristics of antibiotic resistant patients, resistant patients were more likely to use antibiotics in J01 than nonresistant patients who were diagnosed with the same diseases and were prescribed 6.3 times more than DDD.
Journal of Korean Society of Disaster and Security
/
v.12
no.1
/
pp.45-56
/
2019
In this study, the seismic risk has been evaluated by setting the bedrock acceleration to 0.154g which, was taking into consideration that the earthquake return period for the buried electric power tunnels in the metropolitan area to be 1,000 years. In this case, the risk assessment during the earthquake was carried out in three stages. In the first stage, the site classification was performed based on the site investigation data of the target area. Then, the LPI(Liquefaction Potential Index) was applied using the site amplification factor. After, candidates were selected using a hazard map. In the second stage, risk assessment analysis of seismic response are evaluated thoroughly after the recalculation of the LPI based on the site characteristics from the boring logs around the electric power area that are highly probable to be liquefied in the first stage. The third Stage visited the electric power tunnels that are highly probable of liquefaction in the second stage to compensate for the limitations based on the borehole data. At this time, the risk of liquefaction was finally evaluated based off of the reinforcement method used at the time of construction, the application of seismic design, and the condition of the site.
Kim, Byong-Kuk;Lee, Byok-Kyu;Jang, Seung-Jin;Lee, Su-Gon
The Journal of Engineering Geology
/
v.28
no.4
/
pp.673-686
/
2018
The physical properties of rocks constituting the rock mass were analyzed by using various methods such as 7 kinds of physical properties of about 2,400 data. The correlation equation was derived from the correlation equation with the dependent variables by screening independent variables through the significance level using multiple regression analysis. In order to verify the reliability of this equation, verification was performed through comparison with actual data using artificial neural network learning. The analysis results by petrogenesis and strength confirmed that the elastic wave velocity (compressional wave) and elastic modulus as the main influence factors for the independent variables affecting the dependent variables. This proves that most of the correlation equations using the above items are found in existing studies. And through this study, it is confirmed whether the rock classification is based on the above items in various standards. In addition, the analysis results of representative rocks showed a high correlation as the equation for estimating unconfined compressive strength and elastic modulus exceeds the coefficient of determination 0.8.
Many studies have been conducted on developing automatic plant identification algorithms using machine learning to various plant features, such as leaves and flowers. Unlike other plant characteristics, barks show only little change regardless of the season and are maintained for a long period. Nevertheless, barks show a complex shape with a large variation depending on the environment, and there are insufficient materials that can be utilized to train algorithms. Here, in addition to the previously published bark image dataset, BarkNet v.1.0, images of barks were collected, and a dataset consisting of 53 tree species that can be easily observed in Korea was presented. A convolutional neural network (CNN) was trained and tested on the dataset, and the factors that interfere with the model's performance were identified. For CNN architecture, VGG-16 and 19 were utilized. As a result, VGG-16 achieved 90.41% and VGG-19 achieved 92.62% accuracy. When tested on new tree images that do not exist in the original dataset but belong to the same genus or family, it was confirmed that more than 80% of cases were successfully identified as the same genus or family. Meanwhile, it was found that the model tended to misclassify when there were distracting features in the image, including leaves, mosses, and knots. In these cases, we propose that random cropping and classification by majority votes are valid for improving possible errors in training and inferences.
The status of Ppuri industry, including foundry industry was analyzed through statistical surveys over the past 10 years from 2009 to 2018, and summarized for each six Ppuri industries' points of view. Various statistics of Ppuri industry defined by the KSIC (Korean Standard Industry Classification) was obtained, and the status of Ppuri industry was identified through a sample survey of 5,000 companies from more than 30,000 target business companies of Ppuri industry. Throughout the analyzing process, we presented a variety of indicators, such as the number of the Ppuri companies and its ratio, regional distribution through Korean provinces, number of workers, characteristics by age group, sales, profit rates, etc. By devising a comparative method to measure the relative strength of Ppuri industry in Korea, Germany, and Japan, we have presented the competitiveness index change over the 10 years of time. The competitiveness index can be effectively and meaningfully used during various activities of the development of Ppuri industry in the forth coming future. With the current obtained data, we figured out the status of each 6 Ppuri industries, regional distribution, status of workers, sales and profit rates. We also suggested various proposals for strategy and policy making for each sector with urging voluntary response from Ppuri industry.
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.2
/
pp.651-658
/
2021
Because bolts with anti-loosening coatings are used mainly for joining safety-related components in automobiles, accurate automatic screening of these coatings is essential to detect defects efficiently. The performance of the convolutional neural network (CNN) used in a previous study [Identification of bolt coating defects using CNN and Grad-CAM] increased with increasing number of data for the analysis of image patterns and characteristics. On the other hand, obtaining the necessary amount of data for coated bolts is difficult, making training time-consuming. In this paper, resorting to the same VGG16 model as in a previous study, transfer learning was applied to decrease the training time and achieve the same or better accuracy with fewer data. The classifier was trained, considering the number of training data for this study and its similarity with ImageNet data. In conjunction with the fully connected layer, the highest accuracy was achieved (95%). To enhance the performance further, the last convolution layer and the classifier were fine-tuned, which resulted in a 2% increase in accuracy (97%). This shows that the learning time can be reduced by transfer learning and fine-tuning while maintaining a high screening accuracy.
Journal of Korean Library and Information Science Society
/
v.51
no.4
/
pp.313-332
/
2020
The purpose of this study is to compare motivations for self-archiving across disciplines on an academic social networking site. We carried out an online survey with ResearchGate(RG) users, testing 18 motivational factors that we developed from a previous study (enjoyment, personal/professional gain, reputation, learning, self-efficacy, altruism, reciprocity, trust, community interest, social engagement, publicity, accessibility, self-archiving culture, influence of external actors, credibility, system stability, copyright concerns, additional time, and effort). We adapted Biglan's classification system of academic disciplines and compared motivations across different categories of discipline. First, we compared motivations across the four combined categories by the two dimensions - hard-pure, hard-applied, soft-pure, and soft-applied. We also performed a motivation comparison across each dimension between soft and hard disciplines and between pure and applied disciplines. We examined investigated statistical differences in motivations by demographic characteristics and RG usage of participants across categories as well. Findings showed that there were differences of motivations, such as enjoyment, accessibility, influence of external actors and additional time and effort, and personal/professional gains, for self-archiving across disciplines. For example, RG users in the hard-applied were more highly motivated by enjoyment than others; RG users in the soft-pure were more highly motivated by personal/professional gains than others. It is expected that findings could be used to develop strategies encouraging researchers in various disciplines contributing to share their data and publications in ASNSs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.