• Title/Summary/Keyword: Characteristic Condition number

Search Result 200, Processing Time 0.026 seconds

Effects of Characteristic Condition Number on Convergence in Calculating Low Mach Number Flows, I : Euler Equations (저속 유동 계산의 수렴성에 미치는 특성 조건수의 영향 I : 오일러 방정식)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.115-122
    • /
    • 2008
  • The effects of characteristic condition number on the convergence of preconditioned Euler equations were investigated. The two-dimensional preconditioned Euler equations adopting Choi and Merkle's preconditioning and the temperature preconditioning are considered. Preconditioned Roe's FDS scheme was adopted for spatial discretization and preconditioned LU-SGS scheme was used for time integration. It is shown that the convergence characteristics of the Euler equations are strongly affected by the characteristic condition number, and there is an optimal characteristic condition number for a problem. The optimal characteristic condition numbers for the Choi and Merkle's preconditioning and temperature preconditioning are different.

Effects of Characteristic Condition Number on Convergence in Calculating Low Mach Number Flows, II : Navier-Stokes Equations (저속 유동 계산의 수렴성에 미치는 특성 조건수의 영향 II : 나비어스톡스 방정식)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.123-130
    • /
    • 2008
  • The effects of characteristic condition number on the convergence of preconditioned Navier-Stokes equations were investigated. The two-dimensional preconditioned Navier-Stokes adopting Choi and Merkle's preconditioning and the temperature preconditioning are considered. Preconditioned Roe's FDS scheme was adopted for spatial discretization and preconditioned LU-SGS scheme was used for time integration. It is shown that the convergence characteristics of the Navier-Stokes equations are strongly affected by the characteristic condition number. Also it is shown that the optimal characteristic condition numbers for viscous flows are larger than that in inviscid flows.

THE STUDY OF AERO-ACOUSTICS CHARACTERISTIC BY BOUNDARY CONDITIONS (경계조건에 따른 공력음향 특성에 관한 연구)

  • Lee, S.S.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.75-80
    • /
    • 2009
  • The present paper focuses on the analysis of aero-acoustics characteristic by several boundary conditions. In this simulation, a high-order and high-resolution numerical schemes are used for the accurate computation of compressible flow with several boundary conditions including characteristic boundary conditions as well as extrapolation and zonal characteristic boundary condition. These boundary conditions are applied to the computation of two dimensional circular cylinder flows with Mach number of 0.3 and Reynolds number of 400. The computation results are validated with measurement datum and other computation results for the Strouhal frequency of vortex shedding, the mean drag coefficient and root-mean-square lift for the unsteady periodic flow regime. Secondary frequency is predicted by three kinds of boundary conditions characteristic.

  • PDF

THE STUDY OF AERO-ACOUSTICS CHARACTERISTICS BY THE BOUNDARY CONDITIONS OF HIGH ORDER SCHEME (고해상도 수치기법의 경계조건에 따른 공력음향 특성에 관한 연구)

  • Lee, S.S.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.25-32
    • /
    • 2009
  • The present paper focuses on the analysis of aero-acoustics characteristic by appling different four boundary conditions. The high-order and high-resolution numerical schemes are used for discrete accurate computation of compressible flow. The four boundary conditions include extrapolation, characteristic boundary condition, zonal characteristic boundary condition. These boundary conditions are applied to the computation of two dimensional circular cylinder flows with Mach number of 0.3 and Reynolds number of 400. The computation results are validated against measurement data and other computation results for the Strouhal frequency of vortex shedding, the mean drag coefficient and root-mean-square lift for the unsteady periodic flow regime. The characteristics of secondary frequency is predicted by three kinds of boundary conditions.

On the ill - condition of reverse process from structural dynamic response data (구조계의 동적응답을 이용한 역해석에서의 악조건)

  • 양경택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.390-397
    • /
    • 1998
  • An approach to identifying input forces is proposed using measured structural dynamic responses and its analytical model. The identification of input forces is a reverse process and ill-conditioned problem. Its solution is unstable and generally case dependent. In this paper, the ill-condition is described considering characteristic matrix which is defined by reduced dynamic stiffness matrix. Special attention is focused on the condition number of a characteristic matrix used in the solution algorithm of this reverse process. Simple example is presented in support of the ill-condition of a reverse process.

  • PDF

Optimum Design of an Indoor Package Air-Conditioner's Flow Path by Taguchi Method (다구찌 방법에 의한 PAC 실내기 유로의 최적설계)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.32-37
    • /
    • 2014
  • In this study, the optimum design process of an indoor package air-conditioner (PAC) was implemented by Taguchi method. The goal of this study is to obtain the best set condition of each control factor composing of an indoor PAC. The number of revolution of a double inlet sirocco fan installed in an indoor PAC was measured by the orthogonal array of $L_{18}(2^3{\times}3^4)$ and analysed by using the-smaller- the-better characteristic among the static characteristic analyses. As a result, the optimum condition of an indoor PAC was found as a set of when the cost of production, assembling and working conditions were considered. Moreover, the number of revolution of a double-inlet sirocco fan used for an optimum condition was reduced about 8.5% more than that of a standard condition for the target flowrate of $18.5m^3/min$.

Analysis of a Convective, Radiating Rectangular Fin (대류, 복사 사각 핀의 해석)

  • Kang, Hyung-Suk;Kim, Jong-Ug
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.29-34
    • /
    • 2006
  • A convective, radiating rectangular fin is analysed by using the one dimensional analytic method. Instead of constant fin base temperature, heat conduction from the inner wall to the fin base is considered as the fin base boundary condition. Radiation heat transfer is approximately linearized. For different fin tip length, temperature profile along the normalized fin position is shown. The fin tip length for 98% of the maximum heat loss with the variations of fin base length and radiation characteristic number is listed. The maximum heat loss is presented as a function of the fin base length, radiation characteristic number and Biot number.

  • PDF

A Study on Injection Molding Process and Quality Monitoring by Response Surface Analysis (반응표면 분석법에 의한 사출공정 및 품질 모니터링에 관한 연구)

  • Min, Byeong-Hyeon;Lee, Kyeong-Don;Yu, Byung-Kil
    • IE interfaces
    • /
    • v.9 no.1
    • /
    • pp.13-24
    • /
    • 1996
  • Quality of injection molded parts is dependent on both mold design and processing conditions. From the mold design point of view, an optimal shrinkage should be used to compensate the shrinkage of molded parts. From the processing point of view, it is important to analyze the priority of processing conditions because a number processing conditions affect the quality of molded parts. Processing analysis employing the design of experiment was performed, and the shrinkage of molded part was considered as a characteristic parameter to improve the quality. As the result of the analysis of variance on SN ratio of a characteristic value, injection speed and bolding pressure were selected as two effective process parameters. Regression analysis on shrinkage and processing conditions was carried out, and an optimal processing condition was obtained by the response surface analysis. Shrinkage at the optimal condition could be used to reduce the number of try-cut at the step of mold making. The ranges of indirect control parameter, such as maximum cavity pressure or weight, measured at the optimal processing condition were used for monitoring the quality of molded parts in process.

  • PDF

Laminar Flow in the Entrance Region of Helical Tubes Connected with Straight Ones (직관과 연결된 나선관 입구영역의 층류 유동)

  • Kim, Young-In;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.1
    • /
    • pp.9-17
    • /
    • 2008
  • A numerical study for three-dimensional laminar flow in the entrance region of helical tubes connected with straight ones is carried out to investigate the effects of Reynolds number, pitch and curvature ratio on the oscillation periods of the flow. The fully elliptic governing equations were solved by means of a finite volume method. The fully developed laminar flow boundary condition was applied at the straight tube inlet. This results cover a curvature ratio range of 1/10${\sim}$1/320, a pitch range of 0.0${\sim}$3.2, and a Reynolds number range of 62.5${\sim}$2000. A comparison is made with previous experimental correlations and numerical data. The developments of velocity, local and average friction factors are discussed. The average friction factors are oscillatory in the entrance region of helical pipes. It has been found that the angle required for the flow to be similarly developed is most affected by the curvature ratio. The pitch and Reynolds number do not have any significant effect on the angle. The characteristic angle ${\phi}_c(={\phi}/sqrt{\delta})$, or the characteristic length to diameter ratio $s_c(=l\sqrt{\delta} cos(atan{\lambda})/d)$, can be useful to represent the development of flow in helical tubes. As the pitch increases and as the curvature ratio and Reynolds number decrease, the amplitude and the number of flow oscillations along the main streamwise direction decrease.

Characteristic Study of Micro-Nozzle Performance and Thermal Transpiration Based Self Pumping in Vacuum Conditions

  • Jung, Sung-Chul;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.866-870
    • /
    • 2008
  • In this study, we designed cold gas propulsion system with minimum 0.25 mm nozzle and micro-thrust measurement system to analyze flow characteristic of micro propulsion system in ambient and vacuum condition. Argon and Nitrogen are used for propellant and the result of experiments is compared with CFD analysis and theory. But there is a point where reduced scale versions of conventional propulsion systems will no longer be practical. Therefore, a fundamentally different approach to propulsion systems was taken. That is thermal transpiration based micro propulsion system. It has no moving parts such as lubricants, pressurizing system and can pump the gaseous propellant by temperature gradient only(cold to hot). We are advancing basic research of propulsion system based on thermal transpiration in vacuum conditions and had tried experiment process and theoretical access in advance. To characterize membrane of Knudsen pump, we select Polyimide material that has low thermal conductivity(0.29 W/mK) and can stand high temperature($300^{\circ}C$) for long time. And we fabricated hole diameter 1, 0.5, 0.2, 0.1 mm using precision manufacturing. Experimental results show that pressure gradient efficiency of Knudsen pump is increased to maximum 82% according to Knudsen number and thick membranes are more effective than thin membranes in transition flow regime.

  • PDF