• Title/Summary/Keyword: Character Detection

Search Result 249, Processing Time 0.026 seconds

Noise Robust Document Image Binarization using Text Region Detection and Down Sampli (문자 영역 검출과 다운샘플링을 이용한 잡음에 강인한 문서 영상 이진화)

  • Jeong, Jinwook;Jun, Kyungkoo
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.843-852
    • /
    • 2015
  • Binarization of document images is a critical pre-processing step required for character recognition. Even though various research efforts have been devoted, the quality of binarization results largely depends on the noise amount and condition of images. We propose a new binarization method that combines Maximally Stable External Region(MSER) with down-sampling. Particularly, we propose to apply different threshold values for character regions, which turns out to be effective in reducing noise. Through a set of experiments on test images, we confirmed that the proposed method was superior to existing methods in reducing noise, while the increase of execution time is limited.

A Study on Vector-based Automatic Caricature Generation (벡터기반의 캐리커처 자동생성에 관한 연구)

  • Park, Yeon-Chool;Oh, Hae-Seok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.647-656
    • /
    • 2003
  • This paper proposes the system to generate caricature (character's face) resembling human face using extracted facial features automatically. Since this system is vector-based, the generated character's face has no size limit and constraint. So it is available to transform the shape freely and to apply various facial expressions to 2D face. Moreover, owing to the vector file's advantage, it can be used in mobile environment as small file site.

Segmentation and Recognition of Korean Vehicle License Plate Characters Based on the Global Threshold Method and the Cross-Correlation Matching Algorithm

  • Sarker, Md. Mostafa Kamal;Song, Moon Kyou
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.661-680
    • /
    • 2016
  • The vehicle license plate recognition (VLPR) system analyzes and monitors the speed of vehicles, theft of vehicles, the violation of traffic rules, illegal parking, etc., on the motorway. The VLPR consists of three major parts: license plate detection (LPD), license plate character segmentation (LPCS), and license plate character recognition (LPCR). This paper presents an efficient method for the LPCS and LPCR of Korean vehicle license plates (LPs). LP tilt adjustment is a very important process in LPCS. Radon transformation is used to correct the tilt adjustment of LP. The global threshold segmentation method is used for segmented LP characters from two different types of Korean LPs, which are a single row LP (SRLP) and double row LP (DRLP). The cross-correlation matching method is used for LPCR. Our experimental results show that the proposed methods for LPCS and LPCR can be easily implemented, and they achieved 99.35% and 99.85% segmentation and recognition accuracy rates, respectively for Korean LPs.

Character Region Detection Using Hangul Character Structure and Class Feature in Natural Images (자연영상에서 한글 자소 구조 및 유형 특징을 이용한 문자 영역 검출)

  • Bak, Jong-Cheon;Gwon, Gyo-Hyeon;Jeon, Byeong-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.396-399
    • /
    • 2011
  • 모바일 기기의 보급이 확대됨으로서 모바일 기기에 내장된 카메라로 획득한 영상을 처리하는 다양한 종류의 응용프로그램이 개발되어 사용되고 있다. 대표적인 응용프로그램은 카메라로 찍은 영상의 사물 검색결과를 인터넷 검색엔진과 연계함으로서 키워드 입력 없이 검색할 수 있도록 하는 것이다. 본 연구는 그 중에서 한글 문자가 포함된 영상을 대상으로 영상검색 수행하는 연구로서 영상에서 한글 문자 영역을 검출하는 방법을 제안하였다. 한글 문자 구조 특징으로 한글 자소를 병합하여 후보 문자 영역을 추출하고 병합된 후보 문자 영역을 한글 6가지 문자 유형 특징을 기반으로 문자 영역을 여부를 판별함으로서 최종적인 문자 영역을 검출한다. 실험결과 문자영역 재현률이 향상됨을 알 수 있었다.

  • PDF

Recognition of Container Identifier using Color Information and Contour Following (컬러 정보와 윤곽선 추적을 이용한 컨테이너 식별자 인식)

  • Kim Pyeoung-Kee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.3
    • /
    • pp.40-46
    • /
    • 2006
  • Automatic recognition of container identifier is one of key factor to implement port automation and increase distribution throughput. In this paper, I propose a method of container identifier recognition on various input images using color based edge detection and character verification algorithm, I tested the proposed method on 350 container images and it showed good results.

  • PDF

Vehicle-logo recognition based on the PCA

  • Zheng, Qi;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.429-431
    • /
    • 2012
  • Vehicle-logo recognition technology is very important in vehicle automatic recognition technique. The intended application is automatic recognition of vehicle type for secure access and traffic monitoring applications, a problem not hitherto considered at such a level of accuracy. Vehicle-logo recognition can improve Vehicle type recognition accuracy. So in this paper, introduces how to vehicle-logo recognition. First introduces the region of the license plate by algorithm and roughly located the region of car emblem based on the relationship of license plate and car emblem. Then located the car emblem with precision by the distance of Hausdorff. On the base, processing the region by morphologic, edge detection, analysis of connectivity and pick up the PCA character by lowing the dimension of the image and unifying the PCA character. At last the logo can be recognized using the algorithm of support vector machine. Experimental results show the effectiveness of the proposed method.

Structure Recognition Method in Various Table Types for Document Processing Automation (문서 처리 자동화를 위한 다양한 표 유형에서 표 구조 인식 방법)

  • Lee, Dong-Seok;Kwon, Soon-Kak
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.5
    • /
    • pp.695-702
    • /
    • 2022
  • In this paper, we propose the method of a table structure recognition in various table types for document processing automation. A table with items surrounded by ruled lines are analyzed by detecting horizontal and vertical lines for recognizing the table structure. In case of a table with items separated by spaces, the table structure are recognized by analyzing the arrangement of row items. After recognizing the table structure, the areas of the table items are input into OCR engine and the character recognition result output to a text file in a structured format such as CSV or JSON. In simulation results, the average accuracy of table item recognition is about 94%.

Robust Motorbike License Plate Detection and Recognition using Image Warping based on YOLOv2 (YOLOv2 기반의 영상워핑을 이용한 강인한 오토바이 번호판 검출 및 인식)

  • Dang, Xuan-Truong;Kim, Eung-Tae
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.713-725
    • /
    • 2019
  • Automatic License Plate Recognition (ALPR) is a technology required for many applications such as Intelligent Transportation Systems and Video Surveillance Systems. Most of the studies have studied were about the detection and recognition of license plates on cars, and there is very little about detecting and recognizing license plates on motorbikes. In the case of a car, the license plate is located at the front or rear center of the vehicle and is a straight or slightly sloped license plate. Also, the background of the license plate is mainly monochromatic, and license plate detection and recognition process is less complicated. However since the motorbike is parked by using a kickstand, it is inclined at various angles when parked, so the process of recognizing characters on the motorbike license plate is more complicated. In this paper, we have developed a 2-stage YOLOv2 algorithm to detect the area of a license plate after detection of a motorbike area in order to improve the recognition accuracy of license plate for motorbike data set parked at various angles. In order to increase the detection rate, the size and number of the anchor boxes were adjusted according to the characteristics of the motorbike and license plate. Image warping algorithms were applied after detecting tilted license plates. As a result of simulating the license plate character recognition process, the proposed method had the recognition rate of license plate of 80.23% compared to the recognition rate of the conventional method(YOLOv2 without image warping) of 47.74%. Therefore, the proposed method can increase the recognition of tilted motorbike license plate character by using the adjustment of anchor boxes and the image warping which fit the motorbike license plate.

Multi Characters Detection Using Color Segmentation and LoG operator characteristics in Natural Scene (자연영상에서 컬러분할과 LoG연산특성을 이용한 다중 문자 검출에 관한 연구)

  • Shin, Seong;Baek, Young-Hyun;Moon, Sung-Ryong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.216-222
    • /
    • 2008
  • This paper proposed the multi characters detection algorithm using Color segmentation and the closing curve feature of LoG Operator in order to complement the demerit of the existing research which is weak in complexity of background, variety of light and disordered line and similarity of left and background color, etc. The proposed multi characters detection algorithm divided into three parts : The feature detection, characters format and characters detection Parts in order to be possible to apply to image of various feature. After preprocess that the new multi characters detection algorithm that proposed in this paper used wavelet, morphology, hough transform which is the synthesis logical model in order to raise detection rate by acquiring the non-perfection characters as well as the perfection characters with processing OR operation after processing each color area by AND operation sequentially. And the proposal algorithm is simulated with natural images which include natural character area regardless of size, resolution and slant and so on of image. And the proposal algorithm in this paper is confirmed to an excellent detection rate by compared with the conventional detection algorithm in same image.

Face Detection Using Shapes and Colors in Various Backgrounds

  • Lee, Chang-Hyun;Lee, Hyun-Ji;Lee, Seung-Hyun;Oh, Joon-Taek;Park, Seung-Bo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.7
    • /
    • pp.19-27
    • /
    • 2021
  • In this paper, we propose a method for detecting characters in images and detecting facial regions, which consists of two tasks. First, we separate two different characters to detect the face position of the characters in the frame. For fast detection, we use You Only Look Once (YOLO), which finds faces in the image in real time, to extract the location of the face and mark them as object detection boxes. Second, we present three image processing methods to detect accurate face area based on object detection boxes. Each method uses HSV values extracted from the region estimated by the detection figure to detect the face region of the characters, and changes the size and shape of the detection figure to compare the accuracy of each method. Each face detection method is compared and analyzed with comparative data and image processing data for reliability verification. As a result, we achieved the highest accuracy of 87% when using the split rectangular method among circular, rectangular, and split rectangular methods.