• Title/Summary/Keyword: Char Oxidation

Search Result 25, Processing Time 0.02 seconds

Effects of Enzyme Inducers and Glutathione on the Embryotoxicity of Cyclophosphamide in Cultured Rat Embryos (효소유도제 및 glutathione이 전배자배양된 랫드태자에서 cyclophosphamide의 독성에 미치는 영향)

  • 한순영;신재호;권석철;강명옥;이유미;김판기;양미라;박귀례;장성재
    • Toxicological Research
    • /
    • v.11 no.1
    • /
    • pp.31-36
    • /
    • 1995
  • Cyclophosphamide (CP) must be enzymatically activated by cytochrome P450(CYP)-linked mixed-function oxidation pathway to be either mutagenic or teratogenic. Influences of alterations in hepatic mixed-function oxidase acitivity and glutathione (GSH) content on the embryotoxicity of CP were studied in rat whole embryo culture system. The embryotoxicity of CP was compared using rat S-9 fraction (S-9) pretreated with chemicals inducing different CYP isozymes, acetone (ACE), Aroclor 1254 (ARO), $\beta$-naphthoflavone (NAF) and phenobarbital (PHE). When 10.5 day embryos were cultured in the immediately centrifuged rat serum for 48 hrs using general gas char{ging schedule, CP$(40{\mu}g/ml)$ with S-9 induced by either NAF or PHE increased the incidence of realformations and significantly decreased embryonic growth compared with the non-induced S-9 group. ACE or ARO induced S-9 group showed no significant difference in embryonic growth. These data suggest that PB and/or NAF inducible CYP isoenzymes are mainly involved in the activation of CP. To examine the effect of GSH on the embryotoxicity of CP, 10.5 day embryos were exposed to CP and S-9 after preincubation with 10 mM of GSH for 3 hrs. In the GSH pretreated group the growth of embryos increased significantly compared with that of the untreated group, suggesting that GSH may protect embryos in culture from some toxic effects of CP.

  • PDF

($H_{2}S$ Adsorption Capacity of $Na_{2}CO_{3}$ and $KIO_{3}$ Impregnated Activated Carbon (($Na_{2}CO_{3}$$KIO_{3}$ 첨착 왕겨활성탄의 $H_{2}S$ 흡착특성)

  • Kim, Jun-Suk;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.213-221
    • /
    • 2002
  • Activated carbons with high surface area of 2,600 $m^{2}/g$ and high pore volume of 1.2 cc/g could be prepared by KOH activation of rice hulls at a KOH:char ratio of 4:1 and $850^{\circ}C$. In order to increase the adsorption capacity of hydrogen sulfide, which is one of the major malodorous component in the waste water treatment process, various contents of $Na_{2}CO_{3}$ and $KIO_{3}$ were impregnated to the rice-hull activated carbon. The impregnated activated carbon with 5 wt.% of $Na_{2}CO_{3}$ showed improved $H_{2}S$ adsorption capacity of 75 mg/g which is twice of that for the activated carbon without impregnation and the impregnated activated carbon with 2.4 wt.% of $KIO_{3}$ showed even higher $H_{2}S$ adsorption capacity of 97 mg/g. The improvement of $H_{2}S$ adsorption capacity by the introduction of those chemicals could be due to the $H_{2}S$ oxidation and chemical reaction with impregnated materials in addition to the physical adsorption of activated carbon.

A Numerical Study on Coal Devolatilization of Bituminous Coal Using CPD Model

  • Kim, Ryang-Gyoon;Lee, Byoung-Hwa;Jeon, Chung-Hwan;Chang, Young-June;Song, Ju-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2898-2903
    • /
    • 2008
  • The coal considerably is the energy resource which is important with the new remarking energy resource. The coal conversion has two processes which are coal devolatilization and char oxidation. Coal devolatilization is important because it describes up to 70% weight loss and has been shown that nitrogen contribute 60 to 80% of the total NOx produced. The chemical percolation devolatilization(CPD) model is used here to describe coal devolatilization. The model was developed to describe coal devolatilization behavior of rapidly heated coal based on characteristics of the chemical structure of the parent coal. This paper describes CPD model in detail and makes an analysis of Shenhua coal(bituminous) which is used calculated 13-C NMR(carbon-nuclear magnetic resonance).

  • PDF

Spontaneous Combustion of Various Fuels of Carbonization Rank (탄화도별 발전연료의 자연발화 특성 평가)

  • Kim, Jae-Kwan;Park, Seok-Un;Jeong, Jae-Hyeok;Shin, Dong-Ik;Hong, Jun-Seok;Hong, Jin Pyo
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.78-89
    • /
    • 2017
  • Spontaneous combustion propensity of various coals of carbonization grade as a pulverized fuel of coal fired power plant has been tested from an initial temperature of $25^{\circ}C$ to $600^{\circ}C$ by heated in an oven with air to analyze an self oxidation starting temperature. This tests produce a CPT(Cross Point Temperature), IT(Ignition temperature) and CPS(Cross Point Slope) by calculated as the slope of time taken a rapid exothermic oxidation reaction at CPT base. CPS show a carbonization rank dependence, whereby wood pellet has the highest propensity to spontaneous combustion of $20.995^{\circ}C/min$. A subbituminous KIDECO coal shows an CPS values of $15.370^{\circ}C/min$ whereas it of pet coke of the highest carbonization rank has $20.950^{\circ}C/min$. The nature of this trend is most likely a concentration of volatile matter and oxygen functional groups of coal surface that governs the available component for oxidation as well as surface area of fuel char, and constant pressure molar heat.

EFFECT OF TOP END CONDITION OF FUEL BED CONTAINER ON DOWNWARD SMOLDER SPREAD

  • Sato, Kenji;Sakai, Yasuhiro
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.146-153
    • /
    • 1997
  • An experimental study was performed of natural-convection downward smolder spread across a sawdust bed peripherally enclosed with an insulating container, to examine the effect of the open- ing condition at the top end on downward smolder spread. Experiments were conducted by using relatively coarse sawdust and 25-cm-long cylindrical container The variations of temperature profiles along the bed axis with time were determined far different opening conditions and were com-pared with those in smolder spread from open top to open bottom. It was shown that the smolder zone initiated from open top toward closed bottom penetrates the bed with keeping high peak temperature like the case of open top to open bottom spread, although mean spread rate is smaller. This indicates that the downward smolder zone can be sustained stably if sufficient air or oxygen Is supplied from the back of it by natural convection even if upward draft entering from the bottom of the bed is absent. When the top end was partially closed by mounting a cover after stable smolder spread had begun from open top toward open bottom, the temperature at the peak decreased more than 200 K and the smolder zone became to spread with thickening residue. In this case, the shape of temperature profiles continuously changed or decayed until end-effect at the open bottom end enhanced the reaction. The temperature at the shrunk peak, free from the end-effect, was almost identical with the temperature at the exothermic oxidative-degradation zone in smolder spread from open top to open bottom. from these results, it can be inferred for natural-convection downward smolder spread that the oxidation reaction of the char is very sensitive to the oxygen supply by natural convection in the space above the smolder zone, and that the top end opening condition strongly alters the completeness of reactions, structure, and behavior of the smolder zone.

  • PDF